梯队陆续发布新品预告,毫无例外的是,这三家产品均奔着500瓦+而去。
根据光伏們了解到的消息,上述三家组件企业的新品均采取了18Xmm尺寸硅片、多主栅以及半片技术,版型以6*12为主。而210mm阵营的
两家则均采用三分片与多主栅,版型以5*10为主。详细技术路线如下:
备注:组件转换效率一栏为对应的最高效率数值,/部分的信息未能获得。另,以上信息由光伏們通过各个途径了解所得,仅供参考,如有
,实现最大化发电量,多数光伏企业选择了相同的路径大尺寸化。但在组件重量和配套辅材的限制下,电池片和组件尺寸一味求大并不现实。为此,业内企业将目光转向新型组件技术叠焊,并将其称之为PERC之后的下一个重要
工艺。
据晶科能源有限公司研发总监郭志球介绍:叠焊顾名思义,是指将相邻电池片部分重叠,采用传统焊带焊接的方式将电池片进行链接,形成一个串联电路。这种技术消除了传统焊接时产生的电池片间距,最大化利用
,得到广泛应用,MBB+半片成为主流封装工艺。对于210大硅片,由于尺寸较大,主流技术采用3分片5列的封装方式。叠瓦和叠焊有部分企业在推,但应用规模较小。 3.结论与投资建议 光伏至暗时刻
功率市场表现比较积极,也是布局最早的主流光伏公司。
2017年阿布扎比项目首次使用了晶科能源400瓦Cheetah产品,创下2美分多的最低电价。2019年,晶科在评估多种选择后认为现行的TR叠焊技术在
460,500瓦以上制程持续维持全球领先地位。
由于在 PERC工艺节点之后技术进步越来越难,行业各家企业对工艺节点的定义有了分歧,才有了硅片大小成为规格划分的的可能。
只有组件产品的功率越高,效率
光面积并减少电阻损耗,提升组件功率输出,并通过降低银浆用量控制成本,提升组件功率,有效降低度电成本。 多主栅电池组件的技术难点主要体现在电池片分选、组件串焊、组件叠层等方面,其中对电池片分选的
有着高审美需求的屋顶分布式项目。
赛拉弗总裁李纲说:作为一款全面升级的叠瓦组件,新型158叠瓦组件代表了赛拉弗在叠片技术上的一步步完善,突破,趋于完美。如果把新型158叠瓦组件比作我们应对市场的武器
组件、半片组件的特性,内部损耗极低,并进一步改良了产品结构设计,使其具有更高功率和转化效率。赛拉弗将158.75mm电池片平均分成6等分,再通过导电胶实现电池片的可靠连接。新型158叠瓦组件的转化效率
能量密度才是衡量技术进步的标尺,将关注点从单纯拓展电池片尺寸的方式,转向提升产品能量密度。为此,公司推出的Tiger系列组件采用了多主栅叠焊技术以提高能量密度。
在相同情况下,与常规PERC组件相比
,Tiger系列组件在产业链中有着极高的兼容性。
晶科能源产品研发部总监郭志球介绍道:Tiger系列组件所采用的叠焊技术,通过在传统焊带焊接工艺的基础上实现电池片的叠加,缩小电池片间距最大化利用面积从而实现
升级。双玻组件用的封装材料热固型POE已成为全球第二、还生产高铁和电动汽车用的逆变器中的叠层母线排上的绝缘膜(BUSBAR),以创新应对未来接踵而至的挑战。
根据华夏时报报道,4月21日,赛伍发布网下
、散热片500万片、可流动性导热界面材料150吨项目,9215.2万元用于新建功能性高分子材料研发创新中心项目。
吴小平表示:借着上市之后更好的融资条件,赛伍将坚持打造一家多元应用的持续成长型企业的实业
2019年光伏行业的关键词是硅片尺寸,随着硅片尺寸逼近制造极限 ,2020年的关键词将是TR叠焊,该工艺已成为备受众多企业关注的光刻技术之一。这项技术能否为摩尔定律续命?它又是否已经到了最好的应用
电池和组件制程技术对行业而言才是有意义,在一般情况下更先进、密度更高的工艺可以让组件获得更好的效率和性能,同时衰减、PID,抗阴影遮挡、承载、温度系数等一些物理特性也会得到改善,而这些不是单纯的硅片
尺寸变大能解决的。其实行业有很多未能真正实现商业化的先进的技术和工艺,其主要原因是成本过高、或者良率太低,让制造企业望而却步。由晶科能源首推的并在其Tiger产品中采用的TR叠焊工艺,应该是目前兼具