吸收环境中的湿气;其次,溶液的快速蒸发速率会影响薄膜的均匀性。因此,这些挑战常常导致钙钛矿薄膜不均匀且质量差,进而对器件的功率转换效率(PCE)和稳定性产生不利影响。为解决这个问题,研究团队对包括乙醇 。串联器件的示意图如图4a所示。从图4b可以清楚地看到,具有2–3
µm金字塔尺寸的纹理表面被均匀涂覆的钙钛矿膜以及其他功能层所覆盖。相应的器件性能如图4c和d所示;活性面积为1.044
cm
增强、更有效的ITO功函数的调节和掩埋界面钝化。因此,采用CbzBT的冠军器件表现出24.04%的出色功率转换效率
(PCE)、84.41% 的高填充因子以及提升的稳定性。这项工作证明了在SAM Alex
Jen团队通过合理的不对称SAM分子设计成功引入了路易斯碱性氧原子和硫原子,获得了两种新型多功能SAM分子:CbzBF和CbzBT。单晶结构和器件界面表征表明,该设计成功实现了SAM分子堆积
测量的J–V曲线。(b)
IPCE图谱和相应的积分电流。(c) 在一个太阳光照射下(AM 1.5G)最大功率点的稳定功率输出。(d) 基于20个器件的效率分布图。图3a表明TCP基器件获得了 11.50 mA cm‒2的短路电流Jsc,优于DCP基器件(10.69 mA
cm‒2)。IPCE谱图(图3b)进一步表明TCP基器件在350-600波长范围内具有更高的IPCE值。TCP基器件获得高