当前位置:首页 > 光伏资讯 > 光伏技术 > 正文

刘生忠&赵奎AM : 全文详解!超42%纪录效率!钙钛矿电池

来源:知光谷发布时间:2023-09-08 14:59:18作者:知光谷

第一作者:Wu Nan

通讯作者:赵奎

通讯单位:陕西师范大学

研究亮点:

1. 使用氟-N,N,N',N'-四甲基甲脒六氟磷酸盐(F-(CH3)4CN2PF6,缩写为TFFH)的加成方法来稳定前驱体溶液并同时改善结晶动力学

2. F-(CH3)4CN2阳离子通过抑制I−的氧化并同时将新生成的I0还原为I−来稳定前体溶液。PF6−阴离子与Pb-I框架强烈相互作用,钝化欠配位的Pb2+。

3. 优化后的太阳能电池实现了更高的再现性、更好的稳定性,并在1002 lux的光照下达到42.43%的效率,这是所有室内光伏发电中效率最高的。

一、钙钛矿前驱体溶液I-氧化问题

研究发现,随着老化时间的延长,前驱体溶液中的I−离子容易氧化为I0,导致光伏效率和重现性显著降低。例如,I−离子的消耗使前驱体溶液中化学成分的比例发生偏差,导致化学成分与薄膜中的理想化学计量比不同。这种I−氧化还显著改变了溶液的状态,包括前驱体团簇的大小、中间相的形成、化学成分的类型和含量。溶液状态的改变进一步导致薄膜内部的形貌、晶粒度、结晶度、相纯度和陷阱密度不受控制。同时,这些碘间隙形成深陷陷态,导致更多缺陷引起的复合损失。因此,溶液状态的改变最终导致光伏性能变差,特别是当溶液暴露在空气中时,I−氧化加速,这使得使用低成本高通量印刷用于高性能太阳能电池的环境制造变得非常困难。这已经成为商业化的一大障碍。

二、成果简介

有鉴于此,陕西师范大学赵奎团队引入氟-N,N,N',N'-四甲基甲脒六氟磷酸盐(F-(CH3)4CN2PF6,缩写为TFFH)添加剂来解决这个问题,用于高性能FAPbI3(FA=甲脒)基钙钛矿。室内光伏发电。在前驱体溶液中,具有强还原性的F-(CH3)4CN2阳离子有效抑制I−的氧化,同时还将新生成的I0还原为I−,从而稳定前驱体溶液。PF6−阴离子通过与Pb-I框架的强相互作用钝化欠配位的Pb2+。通过使用原位光学检测,强的FA+···TFFH···Pb-I相互作用对钙钛矿结晶动力学和结晶过程中的原位钝化具有有利的影响。进一步深入研究了同时溶液管理和结晶动力学控制对钙钛矿晶粒尺寸、晶体取向、缺陷强度、电荷寿命和提取效率的影响。最后,使用TFFH添加剂的新的和老化的溶液制造具有高再现性和高性能的太阳能电池。重要的是,同时消除I0、Pb0和欠配位Pb2+缺陷实现了室内光伏发电效率42.43%的记录效率。同时,消除缺陷的器件表现出更高的环境老化稳定性。

三、结果与讨论

要点1:钙钛矿的老化及其与 TFFH 的相互作用

当前驱体溶液暴露在空气中时,会发生I−和O2之间的反应,这意味着需要能量势垒来抑制这种反应维持前驱体中的I-含量。同时,一旦出现间隙Pb(PbI)和反位缺陷(FAI、PbI、IFA和IPb)缺陷是在I−损失后形成的,这些缺陷应该被有效钝化。为了消除I0、欠配位Pb2+或Pb0深能级缺陷,作者提出了一种基于TFFH的添加剂策略,其分子结构如图S1所示。选择TFFH作为基于FAPbI3的钙钛矿的添加剂最初是由于PF6-和F-(CH3)4CN2阳离子的存在,这已证明了其作为非吸湿性偶联试剂的有效性。F-(CH3)4CN2阳离子具有两性结构,能够与化学基团相互作用,使其能够与有机分子结合或产生强烈的分子间相互作用。同时,由于众所周知的与 Pb-I 框架的强相互作用,PF6−阴离子被认为是钝化间隙Pb和反位缺陷的良好候选者。因此,所提出的策略应能够实现前体溶液的长期操作耐久性和缺陷消除用于高性能太阳能电池。

首先通过将FAI (1 mol)和TFFH (0.01 mol) 混合在1 mL二甲基甲酰胺 (DMF) 溶剂中,探讨了TFFH在溶液中抑制I−-I0反应的可行性。将含有和不含TFFH的透明新鲜溶液在连续搅拌下暴露于50℃的空气中以加速氧化。透明的FAI溶液在老化约3小时后变成亮黄色,并随着老化时间的推移变成深黄色(图 1a)。相应的紫外可见光谱(UV-Vis)吸收峰位于约。365 nm 随老化时间显着增加(图 1b)。这表明发生了I−-I0反应。而微量的TFFH可以抑制I−-I0反应,这可以从老化过程中溶液颜色的微小变化证明。与纯FAI溶液相比,在老化过程中,含有 TFFH 的FAI溶液在约 365 nm 处的吸收峰变化也小得多。重要的是,在添加TFFH的同时,老化的FAI溶液中形成的I0被还原为I−。随着TFFH浓度的增加,深黄色溶液变回透明,并且约100°C处的吸收峰显着降低。 365 nm(图 1c)。这些结果表明,在 TFFH存在下,I−-I0反应被有效抑制,形成的I0转化为I−。

然后研究了TFFH与PbI2和FAPbI3薄膜之间的相互作用。图1d 显示了PbI2与 TFFH 相互作用后的紫外-可见光谱。显然,引入TFFH后,观察到PbI2的吸收光谱显着增强,而吸收边保持不变。这强烈显示TFFH与PbI2建立了有效的相互作用,证实了其在改变材料光学特性方面的功效。为了证实这些发现,使用X射线光电子能谱 (XPS) 分析验证TFFH对FAPbI3薄膜内元素化学状态的影响(图 1e)。通过比较涉及纯薄膜(对照)和包含 TFFH 的薄膜(目标)可以看出在TFFH掺入后,Pb 4f5/2和Pb 4f7/2的结合能均向较低结合能方向移动0.2 eV。这表明TFFH表现出给电子特性,并具有与Pb2+离子形成键的能力,从而实现缺陷非配位Pb2+缺陷的钝化。此外,在对照薄膜中,Pb0峰值位于136.6和141.4 eV。而引入 TFFH后,这些Pb0峰几乎消失了。印证TFFH有效抑制了薄膜内Pb0缺陷的出现。这种抑制在减轻电荷复合方面起着至关重要的作用,这有利于光伏性能指标,例如器件的开路电压和填充因子。此外,添加 TFFH 后,FAPbI3中 N 1s的结合能从400.6 eV明显变化至400.3 eV(图 1f)。这种转变表明TFFH和FA+之间存在显着的相互作用。

图1 使用TFFH添加剂同时消除I0和Pb0缺陷

要点2:钙钛矿结晶动力学

为了深入了解TFFH和前驱体之间的强相互作用如何影响钙钛矿结晶,进行了原位紫外-可见吸收和光致发光 (PL) 光谱来监测旋涂和热退火过程中的薄膜形成。使用与器件制造程序相同的配方来准确观察钙钛矿结晶过程,时间分辨紫外-可见吸收光谱和PL光谱分别如图2a 和2b 所示。图 S4 显示了约550 nm处的UV-Vis吸收峰强度和750 nm 处α-FAPbI3的 PL 峰强度的相应演变。旋涂时,对照样品和目标样品均表现出可忽略不计的α-FAPbI3结晶信号。然而,在热退火过程中,对照膜在约100°C 时表现出α-FAPbI3的快速结晶。经 UV-Vis 和 PL 光谱证实,延迟时间约为4.5秒。目标情况为7 s。这种延迟结晶现象归因于打破强 FA+···TFFH···Pb-I 相互作用以形成钙钛矿所需的额外能量。

在热退火过程中,两种薄膜的PL峰值强度最初都增加,然后逐渐降低并达到稳定状态。这表明结晶存在多个阶段,例如表面结晶、溶剂从本体中蒸发时的溶解-重结晶以及随后的重结晶。添加TFFH的样品在再结晶过程中PL峰强度一致增加,而在对照中未观察到这种现象。意味着TFFH的添加导致再结晶阶段缺陷引起的非辐射复合损失逐渐减少,这可归因于同时消除I0和欠配位Pb2+缺陷而导致的缺陷钝化。

为了更好地了解 TFFH 添加对钙钛矿结晶过程的影响,进行X射线衍射 (XRD) 来探测热退火过程中形成的结晶相(图 2c)。在热退火之前,两种铸态薄膜均表现出完全非光学活性的δ-FAPbI3(2θ=11.8°),这与图2a、b中所示的光学观察结果一致。TFFH的添加导致中间相的出现(标记为#,2θ=6.6°),进一步表明TFFH和FAPbI3之间存在强相互作用。当温度升至60°C 时,对照膜完成了从δ-FAPbI3到α-FAPbI3的转变,而在目标膜中仍可检测到δ-FAPbI3。这一观察结果表明,在 TFFH 存在的情况下,从δ-FAPbI3到α-FAPbI3的转变速度较慢。这与图2a和2b中描述的延迟α-FAPbI3结晶动力学一致,并进一步表明需要额外的能量来打破α-FAPbI3结晶的FA+···TFFH···Pb-I相互作用。理论模型如图S5所示。为了更直观、清晰地表达TFFH与钙钛矿之间的相互作用,作者还在此基础上提出了图2d中的基本机制,以显示TFFH的添加对钙钛矿结晶动力学的影响,包括打破FA+···TFFH···Pb-I相互作用延迟再结晶阶段的结晶和缺陷钝化。

图2 旋涂和热退火过程中的结晶动力学

要点3:薄膜表征

使用扫描电子显微镜(SEM)和原子力显微镜(AFM)研究薄膜形态。平面图SEM图像显示,添加 TFFH 后平均晶粒尺寸更大,为0.6 至 1.0 μm(图 3a)。此外,位于晶界处的一些点也被消除,从而整体改善了尺寸分布的均匀性。横截面SEM图像进一步表明与对照情况相比,目标薄膜中的晶粒尺寸更大、晶界更少、钙钛矿/TiO2界面接触更好(图 3b)。通过AFM测定表面均方根(RMS),添加 TFFH 后,2×2 μm2区域的粗糙度从23.9 nm显着降低至16.0 nm(图 S6)。从横截面SEM观察到,目标薄膜的更光滑表面归因于电荷传输层更好的界面接触。预计这将有利于电荷提取。进行掠入射广角散射 (GIWAXS) 以探讨结晶动力学变化对钙钛矿结构的影响(图 3c)。在q=1.00 Å−1处观察到主要的α-FAPbI3 3C相,并在q=0.90Å−1处观察到微弱的PbI2信号。PbI2的出现可能是在GIWAXS之前或期间钙钛矿的部分分解。实验中,在图 2c 中热退火后,从XRD图案中观察到可忽略不计的PbI2。XRD也证实了钙钛矿的部分分解(图 S7)。相比之下,目标薄膜表现出更好的晶体稳定性和α-FAPbI3 3C相的晶体取向,以促进电荷传输(图3c,图S7)。进一步研究了 TFFH 对钙钛矿能带结构和电荷复合动力学的影响。从UV-Vis吸收和PL光谱(图 3d),发现TFFH添加剂对钙钛矿带隙的影响可以忽略不计(从图 S8 所示的 Tauc 图中确定为1.54 eV)。而痕量 TFFH 增强了PL强度,这与图 2a所示的原位 PL 观察结果一致。通过时间分辨PL (TRPL) 得出添加 TFFH 表明非辐射复合减少(图 3e)。TFFH引起的薄膜缺陷较少可归因于同时消除了I0和欠配位的Pb2+缺陷,以及良好调节的结晶动力学。对钙钛矿薄膜进行了紫外光电子能谱 (UPS)(图 S9、S10),结果表明,添加TFFH后,价带从–5.33 eV移动到 –5.47 eV,导带从–3.79 eV移动到–3.93 eV(图 3f 和表S2)。这些结果表明,TFFH的添加能够降低钙钛矿/TiO2面的能垒,这有利于电子提取。

使用 FTO/TiO2/钙钛矿/PCBM/Ag 结构电池上利用空间电荷限制电流方法 (SCLC) 来测量钙钛矿薄膜内的缺陷密度(图 3g)。如图 3g所示,控制器件和目标器件的缺陷密度值从1.91×1016至9.39×1015 cm-3。进行电容电压 (C-V) 测量评估n-i-p器件内的内置电场 (Vbi)(图 3h)。添加 TFFH 后,Vbi从1.09 V增加到1.15 V,这表明器件内电荷分离的驱动力更强。

图3 薄膜表征

要点4:光伏性能

制造具有n-i-p器件配置的太阳能电池以评估其光伏性能。图 4b比较了由新鲜溶液和老化溶液(在50 ℃环境下暴露并搅拌15小时)制造的对照器件和目标器件的电流密度-电压 (J-V) 曲线。基于新鲜溶液的对照电池的最高PCE为 23.34%(表 S3,反向23.34%,正向22.37%),VOC为1.14 V,JSC为25.33 mA cm-2,FF为 80.86%。添加1 mg TFFH 后,实现了24.62%的最高PCE(表 S3 和图 S12,反向24.62%,正向23.90%),VOC为1.17 V,JSC为25.60 mA cm-2,FF为82.49%(表S4,不同TFFH浓度的电池的光伏参数)。值得注意的是,溶液老化导致对照电池的 PCE 从23.34%急剧下降至19.66%,而目标电池则从24.62%略有下降至24.19%(表1)。TFFH器件中PCE的显着提高归因于结晶过程中有效的缺陷消除和更好的晶体堆积。溶液老化后具有TFFH的器件再现性的提高归因于溶液中I0和Pb0的同时消除。

图 4c显示了器件的外量子效率 (EQE) 曲线,控制器件和目标器件的积分电流分别为25.17和25.55 mA cm−2。这些接近于J-V曲线确定的JSC。在 400 nm波长以下观察到吸收强度略有增加表明 TFFH 的掺入对钙钛矿层内电荷载流子的光生具有积极影响。图 4d显示了对照电池和目标电池在最大功率点的稳态输出曲线 (SPO)。连续标准太阳光照射900 s后,对照电池的SPO从23.07%下降到21.36%,损失了7%。而目标电池则从24.2%降至24.0%,仅损失了0.8%。有效的缺陷消除可以显着提高连续照明下的稳态输出电流,从而保持器件更稳定的输出性能。还测试了不同光强度下太阳能电池的VOC变化(图4e)。与对照器件的1.66 kBT/q相比,目标器件的斜率显着降低至1.13 kBT/q,这与在钙钛矿溶液和薄膜中观察到的有效缺陷消除一致。相应的光伏参数如表S5所示。目标电池在1002 lux下表现出42.43%的冠军PCE,VOC为0.994 V,JSC为0.145 mA cm-2,FF为82.53%(图 4f)。在相同的1002 lux下,该PCE 高于对照电池(PCE为 38.01%)。比较了迄今为止报道的PSC、OPV、DSSC、a-Si、GaAs、CIGS、碳基或锡基单结室内光伏电池的最高PCE,如图 4g所示。42.43%PCE是迄今为止所有室内光伏电池中报道的最高值。与之前报道的钙钛矿室内光伏电池(图4h)相比,采用TFFH的电池更高的PCE主要归因于FF的改善。这进一步凸显了消除溶液状态和结晶过程中的缺陷的至关重要性。

表1 新的和老化条件下对照和处理后的PSCs参数汇总

图4 光伏性能

要点5:薄膜和器件的稳定性

研究了相应薄膜和未封装器件的寿命,其中记录了环境条件(25℃,湿度(RH)30-40%)下老化时间的 XRD图谱和 PCE 演变。随着老化时间的延长,对照薄膜在2θ=11.8°和12.8°处表现出δ-FAPbI3和PbI2的衍射强度增加(图 5a)。相比之下,目标薄膜的 α-FAPbI3 (2θ=14.0°) 的变化可以忽略不计(图 5b)。在高湿度条件下(25℃,湿度(RH)为90-95%),插图中呈现出相应的照片图像(图5c),目标薄膜在空气中老化36小时后几乎没有分解,但对照薄膜已开始逐渐分解。上述结果表明,TFFH可以有效稳定薄膜,防止其分解成有害的δ-FAPbI3和PbI2。图 5d显示了对照和目标未封装器件的PCE衰减。在环境条件(25℃,湿度(RH)30-40%)下老化存储1680小时后,目标器件仍保持其初始PCE的95.52%,明显高于对照器件(85.62%) 。还研究了热应力(N2气氛,85℃)下的未封装器件(图5e)。连续加热近400小时后,目标器件保持了初始PCE的87.04%,高于对照器件的58.05%。最后,对未封装的器件进行了最大功率点 (MPP) 跟踪,提供了其运行稳定性的进一步证据,如图 S14 所示。值得注意的是,即使在这些条件下,目标器件也表现出卓越的稳定性,在连续运行280小时后仍保持其初始PCE的84%。相比之下,对照设备的保留率相对较低,为63%。综上所述,结果表明,通过掺入TFFH有效消除I0、Pb0和欠配位Pb2+对于提高器件稳定性至关重要。

图5 薄膜和器件的稳定性

四、小结

该工作通过一种添加剂策略,可在溶液老化过程中同时消除I0、Pb0和欠配位Pb2+缺陷,并调节结晶动力学,以提高器件性能和再现性。TFFH添加剂通过将I0还原为I−以稳定前体溶液,在消除碘化物填隙方面显示出良好的效果。 TFFH 还通过 PF6−···Pb-I 框架的强相互作用减少了Pb0和欠配位的Pb2+缺陷。同时,由于需要额外的能量来打破强FA+···TFFH···Pb-I相互作用,延迟了钙钛矿结晶过程,并实现了结晶过程中缺陷的原位钝化。薄膜质量提高为这是同时稳定溶液和结晶动力学调节的结果,有助于证明太阳能电池的效率、再现性和老化稳定性得到提高,室内光伏电池在1002勒克斯照度下的PCE达到创纪录的42.43%。室内光伏发电的效率对陷阱密度的存在异常敏感,特别是在低辐照条件下。因此,在钙钛矿层内或接触界面处包含有效的缺陷钝化策略成为设计和实现高性能且稳定的室内光伏器件的关键要求。

责任编辑:周末

特别声明:
凡本网注明来源: "索比光伏网或索比咨询"的所有作品,均为本网站www.solarbe.com合法拥有版权或有权使用的作品,未经本网授权不得转载、摘编或利用其它方式使用上述作品。

经本网授权使用作品的,应在授权范围内使用,并注明来源: "索比光伏网或索比咨询"。违反上述声明者,本网将追究其相关法律责任。
推荐新闻
AM:1.199 V 高开压 倒置钙钛矿太阳能电池中的界面和体积进行有效的靶向调节

AM:1.199 V 高开压 倒置钙钛矿太阳能电池中的界面和体积进行有效的靶向调节

倒置钙钛矿太阳能电池 (PSC) 的性能和稳定性会受到本体内部和阴极界面问题引起的复合损失、离子迁移和残余应力的不利影响。武汉大学 Jian Zhang,桂林电子科技大学 Jian Zhang,Jian Zhang和Jiang Wang等人使用十二氢-氯唑-十二硼酸阴离子的新型可溶液加工衍生物 ([closo-B 12 H 12] 2−)—(TBA)2[B12H11(OCH2CH2)2OH] (TBA2B)进行简单的后处理—它同时解决了这些问题。在倒置的 PSC 中,TBA2B 的阳离子和阴离子组分通过精

钙钛矿太阳能电池
2024-12-11
26%!华能钙钛矿电池技术研发取得新突破

26%!华能钙钛矿电池技术研发取得新突破

近日,经第三方权威机构认证,中国华能自主研发的大面积钙钛矿-晶硅叠层电池转换效率达26.12%(孔径面积1337.4平方厘米)。标志着华能在钙钛矿电池技术研发方面取得新突破。

华能清能院钙钛矿
2024-12-11
产研融合·创新引领 | 正泰新能“浙江省博士后工作站”授牌仪式圆满举行

产研融合·创新引领 | 正泰新能“浙江省博士后工作站”授牌仪式圆满举行

11月25日,正泰新能“浙江省博士后工作站”授牌仪式隆重举行。此次获批设立博士后工作站,是正泰新能搭建科研人才培养平台的重要里程碑,也是对正泰新能积极推进高端科研人才培养、坚持科技创新的高度肯定。标志着正泰新能在高层次人才培养与科技创新领域迈出了坚实且极具意义的一步,为行业技术进步与创新驱动发展注入强劲动力。

正泰新能钙钛矿/晶硅叠层电池
2024-12-10
协鑫光电完成新一轮融资,叠层组件加速商业化

协鑫光电完成新一轮融资,叠层组件加速商业化

 近日,昆山协鑫光电材料有限公司完成近 5 亿元C1 轮融资。本轮融资由金石投资领投,昆高新集团、红杉中国、瀚漾资本等机构共同参投。

协鑫光电钙钛矿叠层
2024-12-09
天津:未在规定时间内核准、开工、并网风光项目,按规调整

天津:未在规定时间内核准、开工、并网风光项目,按规调整

12月12日,天津发改委发布《天津市风电、光伏发电项目开发管理办法》。办法指出,各区在满足存量项目“风电项目开工率、光伏发电项目投资完成率”均超过50%的前提下,在指导开发规模内,按时序开展项目申报。

风电光伏发电
2024-12-15
贵州14.425GW风光清单:贵州能源集团、国电投、中核均超1GW!

贵州14.425GW风光清单:贵州能源集团、国电投、中核均超1GW!

12月10日,贵州省能源局关于下达贵州省2024年度风电光伏发电建设规模项目计划(第三批)的通知,总装机1442.5万千瓦,包括光伏项目48个,总容量494万千瓦、风电项目90个,总容量948.5万千瓦。具体到各项目业主来看,贵州能源集团获取项目规模最多,达到330万千瓦;国家电投获取项目规模305万千瓦、中核集团138万千瓦、华电集团97.5万千瓦、中广核、广东能源集团、京能集团、中国电建、华能集团、一道新能源集团获取项目规模也都在50万千瓦以上。

光伏发电光伏项目
2024-12-12
一男子涉嫌破坏光伏电站被逮捕!

一男子涉嫌破坏光伏电站被逮捕!

据外媒消息,西班牙警方在特内里费岛逮捕了一名男子,该男子涉嫌对包括风电场和光伏发电厂在内的关键基础设施实施了一系列蓄意破坏行为。

风电场光伏发电厂
2024-12-12
风光同场实证数据出炉 Hi-MO 9无惧阴影遮挡

风光同场实证数据出炉 Hi-MO 9无惧阴影遮挡

近年来,国家积极倡导和推动“风光大基地”建设,在同一场地内同时建设风电和光伏发电设施,旨在实现能源的最大化。风光同场项目以其高互补性和用地成本优势,日益成为新能源项目建设的重要形式。然而,这种项目的光伏组件表面常常会受到风机塔筒的太阳光阴影遮挡,导致局部热斑现象频发,这不仅影响光伏组件的发电效率,还可能对组件的寿命造成严重影响。隆基基于HPBC 2.0电池技术开发的Hi-MO 9组件,以其独特的抗阴影遮挡特殊设计,引领了风光同场项目的新未来。

隆基绿能海上光伏光伏发电
2024-12-11
返回索比光伏网首页 回到刘生忠&赵奎AM : 全文详解!超42%纪录效率!钙钛矿电池上方
关闭
关闭