Science:深度解读!31.25%钙钛矿/硅串联太阳能电池

来源:知光谷发布时间:2023-07-10 11:28:30

第一作者:Xin Yu Chin

通讯作者:Christophe Ballif,Quentin Jeangros,Xin Yu Chin

通讯单位:瑞士洛桑联邦理工学院

研究亮点:

1. 在金字塔型纹理上制备钙钛矿叠层电池;

2. 使用Me-4PACz钝化钙钛矿/HTL界面,FBPAc调整钙钛矿/C60电子传输层界面降低非辐射复合;

3. 串联电池获得31.25%的认证效率,并具有良好的稳定性。

一、晶硅电池存在的问题与挑战

晶体硅(c-Si)太阳能电池的最高记录转换效率为26.8%,已接近理论极限29.5%。为了加速光伏(PV)的部署,优异的光电转换效率降低单面积用电成本非常重要。对于吸光活性层而言,可克服光电转换效率限制的方法是将多种互补光活性材料结合在一个单一器件中。在迄今为止报告的不同类型的多结构设计中,因为c-Si与金属卤化物钙钛矿结合具有高PCE和低制造成本的潜力,在串联太阳能电池中已成为研究的焦点。

二、成果简介

瑞士洛桑理工学院Christophe Ballif 及Xin Yu Chin团队在2018年报道了一种混合两步沉积方法,将热蒸发和旋涂相结合,以使钙钛矿层均匀地涂覆在微米级金字塔结构硅上,从而形成了前后两面都具有纹理结构的钙钛矿/晶体硅串联太阳能电池(DOI:10.1038/s41563-018-0115-4)。尽管这些串联电池由于正面金字塔纹理而具有较高的光电流,但非辐射复合损失仍然很大。

基于先前的工作,作者进一步设计了一种串联器件,其中钙钛矿层被均匀涂覆在具有微米级金字塔结构的硅底层电池上使用了混合沉积方法将钙钛矿层均匀地涂覆,形成了前后都具有纹理结构的钙钛矿/晶体硅串联太阳能电池。通过采用两种不同的膦酸(空穴传输层添加剂:[4-(3,6-二甲基-9H-咔唑-9-基)丁基]膦酸(Me-4PACz),钙钛矿添加剂:2,3,4,5,6-五氟苄基膦酸(FBPAc))作为界面缺陷的钝化剂,这些钝化策略提高了串联电池的效率,使其超过30%,并达到认证值为31.25%。

三、结果与讨论

要点1:识别和减轻钙钛矿顶部电池中的电压损失

研究中通过测量光致发光量子产率来评估非辐射复合引起的损失途径。实验中使用混合两步沉积方法在不同层堆叠上制备了p-i-n钙钛矿太阳能电池。通过测量具有代表性的不同层堆叠的光致发光量子产率,评估了裸钙钛矿层在玻璃上的准费米能级分裂(QFLS)(图1A)。当加入FBPAc时,裸钙钛矿层的QFLS保持不变。在加入空穴传输层(HTL)时,FBPAc的添加会略微增加QFLS。

图1 添加FBPAc时,减少了非辐射复合损失并改善了晶体学特性

x射线光电子能谱(XPS)的结果显示,FBPAc可以抑制Pb2+/Pb0表面缺陷,从而有效降低了顶层非辐射复合态的存在。当C60存在时,FBPAc的正面影响主要体现在其与钙钛矿的分离上,减少了C60与钙钛矿直接接触时形成的深陷阱态的存在。需要注意的是,一些因素可能会影响本研究中呈现的QFLS数据:首先,在退火步骤和随后的光致发光测量过程中,氧气和湿度的存在可能导致Pb相关缺陷的钝化。其次,x射线衍射(XRD)图谱显示,添加FBPAc会减少结晶过程结束时剩余的PbI2晶相的比例,这可能会降低带有添加剂的薄膜的光致发光量子产率和QFLS。

要点2:改变钙钛矿晶化动力学和产生的微观结构

为了理解FBPAc对钙钛矿晶化过程的影响,作者进行了在150°C下的原位GIWAXS实验,可以观察到尽管钙钛矿(110)和(002)平面的晶化起始点(q ~ 10.1 nm−1)在有无添加剂的情况下相似,但是FBPAc使得钙钛矿的晶化速率在实验进行到100 s时变慢(图2A)。随后,在整个实验过程中,这些钙钛矿反射强度继续增加,直到约400 s,而对比样品没有观察到这种效应。对比样品峰值强度在150 s后稳定并保持较低的值。PbI2峰值时也观察到了FBPAc对晶化路径的改变(图2A)。这种两步和整体较慢的晶化动力学与添加剂之间的相互作用可能是由于Pb2+和FBPAc之间的相互作用引起的。FBPAc减缓了CsBr/PbI2向钙钛矿相的转化,因为FBPAc与其他钙钛矿前体物(即FAI和FABr)竞争与Pb2+配位。优点是因为FBPAc可能抑制新钙钛矿颗粒或领域的成核(图2B),这种形成动力学的差异导致了具有明显更大和更清晰定义的钙钛矿领域的薄膜。

图2 FBPAc对钙钛矿结晶和所得微观结构的影响

图2C观察到亚微米级的暗区域为FBPAc钝化的钙钛矿薄膜,通过气场离子源氦和氖离子显微镜结合次级离子质谱(SIMS)(图2C),发现这些团簇富含F和C,这表明了FBPAc在钙钛矿表面的聚集。对比样品中薄膜没有显示出任何聚集,并且其表面上的F和C含量较低。XPS结果表明,在钙钛矿晶化过程中较大的FBPAc分子被排出到顶部限制在顶部钙钛矿表面。QFLS损失的大幅降低表明,FBPAc在表面以形成团簇的方式,钝化了与铅相关的缺陷,并减轻了C60层中陷阱态的形成。

要点3:钙钛矿单结和钙钛矿/晶体硅串联太阳能电池

以玻璃/ITO/HTL/钙钛矿/C60/BCP(或SnOx)/Cu(或Ag)制备的单结钙钛矿太阳能电池。当从spiro-TTB切换到TaTm和Me-4PACz时,器件的开路电压(Voc)提高了20到30 mV,并且添加FBPAc后额外提高了40到50 mV,与图1A中的QFLS结果相一致。相应的填充因子(FF)在更改HTL时平均增加了约69%至76%,然后使用添加剂后增加至约78%至81%,证实该分子不会形成阻碍电子提取的屏障。总体而言,Me-4PACz和FBPAc的组合可实现高达19.5%的光电转化效率(PCE)。

然后,作者调整了钙钛矿沉积条件,以在硅异质结底部电池上制备1 cm2的串联电池,该电池在晶片的两侧具有2至3 µm的金字塔结构(图3A)。与之前的工作相比,钙钛矿层变厚从约650 nm增加到约1 µm。使用TaTM或Me-4PACz获得了1.9V的开路电压,这与单结电池的结果一致。TaTm基串联电池的填充因子较Me-4PACz低,可能是由于未掺杂的TaTm中空穴迁移率较低。此外作者还研究了钙钛矿带隙变化对性能的影响,通过将FABr:FAI的摩尔比从2改变为1.75和1.5(分别对应1.69、1.68和1.67 eV)使用这些钙钛矿组分均可以实现PCE >30%。这些串联电池在室温下在N2中存储超过360天时保持稳定,其中一些未封装的电池在环境中以其最大功率点在65°C下运行,在约20至30%相对湿度一个太阳光下最稳定的器件达到了T80约为66小时。

图3串联器件结构及光伏性能

采用Me-4PACz和FBPAc的串联电池被送往国家可再生能源实验室(NREL)进行认证。图3C认证的相对外部量子效率(EQE)表明两个子电池的Jsc均大于20 mA/cm2,未处理的串联电池略受顶部电池限制。使用渐进最大功率(Pmax)扫描方法在标准测试条件(STC)(25°C,1000 W/m2,AM1.5G)下测量了器件的稳定J-V特性,最高效率的电池达到了1.91 V的开路电压,20.47 mA/cm2的Jsc和79.8%的FF,从而得到了31.25%的认证PCE(1.1677 cm2)。

四、小结

该项研究在钙钛矿/晶体硅串联电池的界面上识别和减轻了非辐射复合损失,其中晶体硅晶片具有微米级纹理­­——这是晶体硅光伏行业中使用的标准。使用Me-4PACz可以减少钙钛矿/HTL界面的电压损失,而在钙钛矿沉积序列中加入FBPAc可以减少钙钛矿/C60电子传输层界面的电压损失,并导致具有更有利的钙钛矿微观结构和更大领域的形成。采用混合两步法在均匀沉积高质量的1 µm厚钙钛矿吸收层,并在吸收层的两侧引入膦酸基团以改善界面钝化,这对于如何将标准工业微米级纹理的晶体硅太阳能电池升级以提高其光电转化效率至30%以上具有指导意义。

五、参考文献

XIN YU CHIN et al. Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells, Science

Doi: 10.1126/science.adg0091(2023).

https://www.science.org/doi/10.1126/science.adg0091


索比光伏网 https://news.solarbe.com/202307/10/369496.html
责任编辑:zhouzhenkun
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
34.07%!众能光储实现钙钛矿/晶硅叠层电池效率新突破来源:钙钛矿光链 发布时间:2026-02-06 09:25:31

近日,无锡众能光储自主研发的钙钛矿/晶硅异质结叠层电池,经TV北德认证光电转换效率达34.07%,跻身全球前列。碳基领跑:碳基实验线效率24%,团队在碳基钙钛矿电池效率方面先后四次打破领域记录,处于世界领先水平。叠层突破:HJT/钙钛矿叠层电池效率TV认证效率34.07%,跻身全球前列,深度融合自主研发的空间钙钛矿能源路线,为航天等高端应用场景的产业化落地奠定了坚实的工艺基础,并构建起完整的系统解决方案。

新疆拟建多层复合太阳能电池项目!来源:投资克拉玛依 发布时间:2026-02-02 09:23:40

内容显示,克拉玛依拟建设年产350MW多层复合太阳能电池生产装置及其他辅助设施,预计总投资22亿元,建设地点位于乌尔禾工业园区北区,拟占地100亩。该项目合作方式为合作、合资、独资。本项目投产后将极大地降低光热企业成本。克拉玛依商务局表示:随着新疆“十大产业集群”战略的深入实施,多层复合太阳能电池有望成为继硅基光伏之后的第二增长极,预计2030年市场规模突破200亿元,占新疆光伏组件市场的25%以上。

一光伏上市公司实控人被留置来源:东材科技公告 发布时间:2026-01-30 10:09:44

1月28日,四川东材科技集团股份有限公司发布公告称,公司于2026年1月27日收到高金技术产业集团有限公司通知,高金集团于近日收到四川省监察委员会签发的关于公司实际控制人、副董事长熊海涛女士被留置、立案调查的通知书。截至本公告披露日,公司未被要求协助调查。据企查查显示,东材科技是高金集团旗下控股公司,实控人为熊海涛。

瑞士屋顶光伏服役30年,发电效率仍超八成来源:能源转型与双碳观察 发布时间:2026-01-29 09:18:56

瑞士研究团队发现,热量是影响电池板寿命的关键因素。封装胶膜老化会产生易引发腐蚀的化学物质,进而导致电池板发电效率下降。该研究对房主与电网的意义若光伏电池板在使用超30年后仍能保持较高发电效率,将彻底改变太阳能作为投资的成本效益计算。此外,这一发现还关乎气候保护与公众健康。对“长寿命”的客观认知该研究并非表明所有光伏电池板都能以最小的损耗运行超过30年。

突破55W/g!我国新型钙钛矿空间光伏技术刷新“功质比”世界最高纪录!来源:钙钛矿工厂 发布时间:2026-01-29 08:47:41

量级革命,刷新人类光伏功质比最高纪录钙钛矿太阳能电池凭借其卓越的光电特性,成为制备高功质比器件的理想载体。公司科研团队自2019年起深耕大功质比超轻量柔性钙钛矿技术领域,历经数年技术攻关,多次刷新行业纪录。

印度Premier Energies新增400MW电池产能,总产能增至3.6GW来源:TaiyangNews 发布时间:2026-01-28 08:50:19

2026财年第三季度,PremierEnergies营收为193.6亿印度卢比,同比增长13%,EBITDA增长15.5%,达到59.3亿印度卢比,年收入增长53.4%。在此之前,截至2026财年第三季度末,公司报告的累计电池产能为3.2GW,组件产能为5.1GW。PremierEnergies制定了宏大的扩产目标:计划到2026年9月实现10.6GW的太阳能电池产能和11.1GW的组件产能。截至2025年12月31日,公司在手订单价值1372.3亿印度卢比,总量达9.41GW,其中电池订单占比较高,且100%针对国内市场。

美国太空光伏制造商Solestial收购梅耶博格设备,打造100%本土供应链来源:TaiyangNews 发布时间:2026-01-28 08:46:53

美国太空太阳能技术公司Solestial宣布收购瑞士光伏制造商梅耶博格位于德国Hohenstein-Ernstthal工厂的生产设备。Solestial通过收购MeyerBurger的设备,将太阳能电池制造业务转移到美国,以加强供应链控制和国内制造能力战略。Solestial解释称,这一战略收购将使其能够在美国本土内部完成从硅片到电池的完整工艺流程。Solestial与梅耶博格的渊源始于2024年8月,当时双方建立合作伙伴关系,旨在制造太空用柔性太阳能组件。

博达2GW太阳能电池和3GW光伏组件投产!来源:光伏见闻 发布时间:2026-01-27 09:34:34

1月24日,埃及苏伊士/美通社电——全球领先的光伏组件一体化制造商博达新能宣布,其位于埃及苏伊士运河经济区的5GW光伏组件新工厂正式投产,成为该公司全球扩张战略的重要里程碑。该工厂涵盖2GW高效太阳能电池产能与3GW光伏组件产能,搭建起全集成生产平台,产品供应全球集中式、工商业领域客户。2024年12月16日,博达新能举行该项目奠基仪式,该项目占地7.8万平方米,原计划2025年9月全面投产。

阿特斯胜诉!美国专利局裁定Maxeon索赔无效来源:TaiyangNews 发布时间:2026-01-26 09:27:36

对于PTAB的最新裁决,阿特斯表示欢迎,并称这证明了公司的技术基础和成熟的法律能力。Maxeon近年来在全球范围内对多家公司提起了类似的专利侵权诉讼,涉及对象包括爱旭股份、通威太阳能、韩华Qcells和RECSolar。截至目前,Maxeon已与通威达成协议;在荷兰对爱旭的诉讼中,海牙上诉法院裁定Maxeon败诉,随后Maxeon撤回了在荷兰的上诉,并于去年年底再次在德国慕尼黑提起诉讼。双方最终达成和解协议,阿特斯同意在2025年第二季度之前停止在日本销售其叠瓦电池组件。

27.87%!光因再破单结钙钛矿电池效率天花板来源:光伏前沿 发布时间:2026-01-26 09:17:45

光因科技此次突破,不仅大幅拉开了与晶硅技术的差距,更为全钙钛矿叠层电池突破35%的转换效率预留了充足空间。

33.45%!琏升科技异质结/钙钛矿叠层电池效率再攀新高峰来源:琏升科技 发布时间:2026-01-23 09:09:45

由琏升科技研发的钙钛矿/晶硅异质结叠层电池再次实现里程碑式效率跃升——经国家太阳能光伏产品质量检验检测中心权威认证,转换效率从32.99%提升至33.45%。这一效率突破的核心在于琏升科技对HJT底电池的深度重构和钙钛矿顶电池界面工程的升级。因此,异质结及异质结叠层电池具备“高效、轻质、低成本、柔韧、抗极端环境”等特性,有望成为平衡高效率与低成本的下一代技术路线。

新闻排行榜
本周
本月