J. Energy Chem.: 前驱液工程刷新CsPbIBr2钙钛矿电池最高效率

来源:知光谷发布时间:2023-12-05 16:12:48

1. 引言

近年来,全无机钙钛矿(CsPbX3)由于其优异的热稳定性而受到了广泛的关注。其中,CsPbIBr2钙钛矿能够同时兼顾合适的带隙和稳定性,被认为是一种理想的光电材料用于包括太阳能电池、探测器、智能光伏窗户等多个领域。

目前,已报道的CsPbIBr2钙钛矿太阳能电池的光电转换效率仅有11-12%,仍远低于其理论极限值。其中一个主要的原因是其前驱液浓度较低,导致溶液旋涂法制备的钙钛矿薄膜厚度仅为250‒280 nm,从而严重影响了光捕获能力和光电转换效率的进一步提升。

2. 成果展示

近期,大连理工大学于泽等采用由溴化铯、碘化铅和溴化铅组成的三组分前驱液配方(TCP),来替代目前广泛使用的基于碘化铯和溴化铅的二组分配方(DCP)。三组分配方将前驱液浓度提高到1.3 M,因此获得了390纳米厚的CsPbIBr2钙钛矿薄膜。同时,由于碘化铅与DMSO更强的相互作用,有效调节了钙钛矿的晶体生长过程,从而获得了晶粒尺寸更大、表面平整的高质量钙钛矿薄膜。在此基础上,将小分子方酸类修饰材料(SQ‒C8)引入到钙钛矿与空穴传输材料之间,钝化表面缺陷和加快电荷传输,最终获得了12.8%的光电转换效率。这是目前CsPbIBr2钙钛矿太阳能电池的最高效率。

该研究工作以“Precursor engineering enables high-performance all-inorganic CsPbIBr2 perovskite solar cells with a record efficiency approaching 13%”为题发表在期刊Journal of Energy Chemistry上,第一作者为大连理工大学硕士生常青艳和香港城市大学博士后安怡澹,通讯作者为香港城市大学叶轩立教授和大连理工大学于泽教授。

3. 图文导读

图1. CsPbIBr2前驱体溶液的DLS图谱:(a) DCP和 (b) TCP。CsPbIBr2薄膜的原位紫外-可见吸收光谱:(c) DCP和 (d) TCP。(e) DCP和TCP制备的CsPbIBr2薄膜在550 nm处吸收强度的演变。(f) DCP和TCP制备CsPbIBr2薄膜的XRD图谱。

通过时间分辨紫外-可见光谱(图1c 和 1d)表明,与基于 DCP 的薄膜 (200 ~ 270 s) 相比,TCP制备的CsPbIBr2薄膜明显表现出相对缓慢的结晶过程 (200 ~ 320 s)。我们进一步选择550 nm处峰值强度随时间的演变来跟踪薄膜结晶的变化(图1(e))。TCP制备的薄膜晶体生长速率(npc)为0.017,明显慢于基于DCP的薄膜的相应值(npc= 0.024)。XRD图谱(图1(f))表明TCP处理的薄膜显示出更高的结晶度。

图2. CsPbIBr2钙钛矿薄膜 SEM表面图:(a) DCP 和 (d) TCP。CsPbIBr2钙钛矿薄膜截面 SEM图:(b) DCP 和 (e) TCP。CsPbIBr2钙钛矿薄膜 AFM图:(c) DCP 和 (f) TCP。

图2a和2d表明TCP制备的CsPbIBr2钙钛矿薄膜具有更大的晶粒尺寸和较少的晶界。由于前驱液浓度的提高,薄膜厚度由280纳米(DCP)增加到了390纳米(TCP) (如图2b和2e所示)。图2c和2f的AFM结果表明,相比于DCP,TCP制备的CsPbIBr2钙钛矿薄膜表面粗糙度从24.1纳米减少到21.7纳米。

图3. 基于DCP和TCP的最佳太阳能电池性能:(a) 在100 mW cm−2(AM 1.5G)下测量的J–V曲线。(b) IPCE图谱和相应的积分电流。(c) 在一个太阳光照射下(AM 1.5G)最大功率点的稳定功率输出。(d) 基于20个器件的效率分布图。

图3a表明TCP基器件获得了11.50 mA cm‒2的短路电流Jsc,优于DCP基器件(10.69 mA cm‒2)。IPCE谱图(图3b)进一步表明TCP基器件在350-600波长范围内具有更高的IPCE值。TCP基器件获得高短路电流的主要原因是由于钙钛矿吸光层厚度的显著增加,进而提升了光捕获能力。图4(a-d) 证明TCP前驱液配方有效地提高了钙钛矿薄膜的质量,减少了其缺陷态密度,抑制了载流子的非辐射复合,从而提升了器件的开路电压。图4e表明SQ‒C8界面修饰层的引入,不仅可以有效的钝化钙钛矿表面缺陷,同时可以加速电荷在界面的提取,将光电转换效率进一步提高到12.8%。

图4. CsPbIBr2钙钛矿薄膜: (a) PL和 (b) TRPL图谱。(c) 仅电子器件的SCLC曲线。(d) 器件的Voc对光强的依赖性。(e) 在100 mW cm‒2 (AM 1.5G)下测量的有无SQ-C8修饰的TCP基器件的J−V曲线。(f) 未封装器件的空气稳定性 (25% ± 5% RH、25 ℃)。

4. 小结

本工作成功地发展了一种三组分前驱液体系用于制备高质量的CsPbIBr2钙钛矿薄膜。三组分前驱液一方面增加了钙钛矿薄膜的厚度,从而显著地提升了光捕获能力。另一方面,三组分配方调节了钙钛矿的结晶过程,获得了晶粒尺寸更大、缺陷更少的高质量CsPbIBr2钙钛矿薄膜。这一工作为溶液法制备高质量CsPbIBr2钙钛矿薄膜用于高效太阳能电池和其它光电器件提供了一个新的思路。


索比光伏网 https://news.solarbe.com/202312/05/374226.html
责任编辑:zhouzhenkun
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
苏大袁建宇团队AM: 倒置钙钛矿太阳能电池实现 26.11% 的冠军效率!来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:15:02

效率:DCA-1F共SAMs器件表现最优,冠军PCE26.11%,开路电压1.179V,短路电流密度25.89mA/cm,填充因子85.49%;DCA-0F、DCA-2F共SAMs器件PCE分别为25.21%、25.05%,均高于纯MeO-2PACz对照组。稳定性:30-50%湿度环境下储存1000小时,DCA-1F共SAMs器件保持90%初始PCE;1太阳光照下最大功率点跟踪1000小时,仍维持~90%效率,而纯MeO-2PACz器件500小时后效率衰减超50%。DCA分子与MeO-2PACz在溶液状态下自聚集行为的示意图。近期报道的基于共自组装单分子层策略的高效钙钛矿太阳能电池性能汇总。

目前最高值!AFM:双重钝化策略使钙钛矿电池太阳能-氢能转换效率达6.5%来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:13:06

FASCN促进钙钛矿晶粒长大,PDAI减少表面缺陷,共同抑制非辐射复合并提升电荷提取效率。进一步通过三元富勒烯混合物优化电子传输层,改善能级对齐并降低界面能量损失,使小面积器件的开路电压从1.41V提升至1.60V,能量转换效率达9.4%。该系统太阳能-氢能转换效率达6.5%,是目前报道的单吸收体PV-EC系统中最高值。单吸收体水分解效率创纪录:将优化后的1.0cm器件集成于PV-EC系统,实现6.5%的太阳能-氢能转换效率,为目前单吸收体光解水系统最高值。

27.2%!中科院游经碧团队Science:HVCD策略制备高效率钙钛矿太阳能电池来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:11:11

近期,中国科学院半导体研究所游经碧研究员领导的团队发现,基于MACl制备的钙钛矿薄膜存在垂直方向上氯分布不均匀的问题,主要原因是MACl中的氯离子在钙钛矿结晶过程中迅速迁移至上表面引起富集。基于所开发的氯元素均匀分布的钙钛矿薄膜,团队研制出经多家权威机构认证、光电转换效率为27.2%的钙钛矿太阳能电池原型器件。该研究实现了钙钛矿太阳能电池效率与稳定性方面的协同提升,将为其产业化发展提供重要支撑。

AFM:双重奏效!FAPbBr₃钙钛矿电池开路电压跃升至1.60V,光解水效率突破6.5%来源:知光谷 发布时间:2025-12-23 10:02:56

宽带隙甲脒铅溴钙钛矿太阳能电池在单结吸收体实现无辅助光驱动水分解方面具有潜力。FASCN促进钙钛矿晶粒长大,PDAI减少表面缺陷,共同抑制非辐射复合并提升电荷提取效率。进一步通过三元富勒烯混合物优化电子传输层,改善能级对齐并降低界面能量损失,使小面积器件的开路电压从1.41V提升至1.60V,能量转换效率达9.4%。研究亮点:双重钝化协同增效:体相添加FASCN促进晶粒生长,表面处理PDAI钝化界面缺陷,显著抑制非辐射复合,开路电压提升至1.53V。

Joule 崔光磊、唐波 喷雾制备钙钛矿 曲面器件23.2% 溶剂工程 强弱络合剂组合实现局部高浓度前驱体策略来源:钙钛矿太阳能电池文献精读集锦 发布时间:2025-12-22 16:15:40

本文提出局部高浓度(LHC)前驱体策略,通过强/弱配体溶剂组合调控溶剂化结构,使钙钛矿在喷雾沉积过程中于液滴内实现均匀受限的体相预成核,成功制备出高质量钙钛矿薄膜,实现了高效、高湿度耐受、可在复杂曲面沉积的钙钛矿光伏器件。

抑制PEDOT:PSS相分离以提升柔性全钙钛矿叠层太阳能电池效率来源:钙钛矿材料和器件 发布时间:2025-12-22 13:45:15

Empa、四川大学、国立清华大学、FluximAG、苏黎世联邦理工学院和斯洛伐克科学院的研究人员证明,超薄PEDOT:PSS中的垂直相分离会产生界面偶极,限制柔性钙钛矿叠层电池性能,而将曲拉通加入PEDOT:PSS可抑制这些偶极子并提升器件效率。柔性全钙钛矿叠层太阳能电池和微型模块。本研究不仅揭示了PEDOT:PSS中界面偶极子作为钙钛矿叠层中的隐藏损耗机制,还提供了一种可扩展的克服方法。

苏州大学袁建宇AFM:均匀接触的共自组装单层膜实现效率超过26%的倒置钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-22 08:50:50

咔唑基自组装单层膜作为倒置钙钛矿太阳能电池中的空穴传输层被广泛使用,但它们在溶液中易形成胶束,导致界面均匀性下降。本文苏州大学袁建宇等人设计并成功合成了一系列氟化共轭SAMs,开发出一种用于高性能倒置PSCs的共SAM体系。基于DCA-0F、DCA-1F和DCA-2F共SAMs制备的倒置PSCs分别实现了25.21%、26.11%和25.05%的冠军光电转换效率。共SAM策略实现高效稳定器件:DCA-1F与MeO-2PACz共混形成均匀单层,使倒置PSCs效率提升至26.11%,并在MPP跟踪1000小时后保持约90%初始效率。

河南大学宋金生, 李萌&斯图加特大学左巍巍ACS Energy Lett.:寡聚物链长精确调控钙钛矿结晶、缺陷与界面动力学来源:先进光伏 发布时间:2025-12-17 11:50:20

河南大学宋金生,李萌&斯图加特大学左巍巍报道了一种采用合理设计的4PACz寡聚物的共沉积策略。其中,三聚体tri-4PACz在溶解性和缺陷抑制之间实现了最佳平衡。表征证实,tri-4PACz能在界面形成高度有序、紧密排列的单层,其咔唑单元直立取向,有利于降低空穴提取势垒。瞬态光电流测量证实,tri-4PACz基器件的电荷收集寿命缩短至320ns,快于4PACz器件的617ns,说明其界面电荷提取速度更快。

李萌课题组在ACS Energy Letters报道自组装寡聚物优化钙钛矿光伏器件新进展来源:钙钛矿材料和器件 发布时间:2025-12-16 16:30:42

图1基于4PACz寡聚物共沉积构建的器件结构示意图及相应的器件效率针对上述问题,河南大学李萌教授团队提出自组装寡聚物—钙钛矿共沉积策略,利用合理设计的4PACz低聚物在成膜过程中自组装,实现功函数调节、电荷传输增强、结晶引导与缺陷钝化的协同优化。其中,三聚体4PACz在溶解度与缺陷抑制之间取得最佳平衡。本工作得到了国家自然科学基金委、河南省科学技术厅和河南大学的大力支持。

Advanced Energy Materials:底部锚定实现阳离子均匀分布与无应变结晶,打造高效稳定倒置钙钛矿太阳能电池来源:钙钛矿材料和器件 发布时间:2025-12-15 22:01:48

江西理工大学团队Advanced Energy Materials:底部锚定实现阳离子均匀分布与无应变结晶,打造高效稳定倒置钙钛矿太阳能电池

基于Mxene的钙钛矿太阳能电池实现了25.75%的破纪录效率来源:钙钛矿材料和器件 发布时间:2025-12-15 21:54:20

西班牙的一个研究团队声称利用MXenes或其他二维材料制造了世界上最高效的钙钛矿太阳能电池。该器件依赖Mxene夹层,抑制非辐射复合,并在钙钛矿吸收层与电子传递层界面处提升电荷提取。