本研究南京邮电大学辛颢、中国科学院物理研究所石将建和孟庆波等人通过分子工程调控溶液法ZnO纳米颗粒/银纳米线窗口层的多界面,解决了界面接触不良、表面缺陷和能级失配等问题,实现了全溶液加工Kesterite太阳能电池的14.3%认证效率。文章亮点:高效率突破:通过多界面分子工程优化,全溶液加工Kesterite太阳能电池实现了14.3%的认证效率,创下该技术路线的最高纪录。
低n值准二维钙钛矿具有优异的稳定性,但其电荷传输效率较低。文章亮点:高效与稳定兼得:通过酪氨酸调控低n值相(n≤3),同时提升准二维钙钛矿的稳定性和效率。载流子传输突破:Tyr增强层间电荷耦合,载流子扩散长度超1μm,电子迁移率提升4倍,器件滞后效应显著降低。大规模应用潜力:72.47cm组件实现20.28%认证效率,为目前大面积准二维钙钛矿器件的最高纪录,展示了商业化前景。
近年来,随着能源需求的日益增长和光伏技术的不断发展,钙钛矿太阳能电池正逐步从实验室小面积器件走向大面积光伏组件产业化发展。目前,实验室级钙钛矿太阳能电池模组的效率已经突破23%,展现出巨大的商业化潜力。此外,照阳光能研究团队还聚焦于实现大面积钙钛矿太阳能电池组件规模化生产所面临的核心挑战,深入探讨了制造工艺的可控性、光伏组件的长期运行稳定性以及组件制造成本等关键影响因素。
本文针对无甲基铵CsxFA1-xPbI3钙钛矿太阳能电池中存在的结晶取向无序和埋底界面缺陷问题,创新性地设计了一种双功能氨基配体吗啉-4-甲脒盐酸盐,通过同时调控钙钛矿结晶取向和界面能级排列,实现了高效稳定的倒置钙钛矿太阳能电池及组件。图3F的PL强度动力学显示M4CH样品在第二阶段强度下降速率降低31%,证实其抑制随机取向晶粒生长的作用。Figure4详细阐明了M4CH对缺陷态与载流子动力学的调控作用。
论文概览在倒置钙钛矿太阳能电池中,表面钝化处理一直是提高器件性能的关键研究方向。采用这一钝化策略优化后的器件,功率转换效率超过25%,为高效钙钛矿太阳能电池的表面化学提供了新的见解。然而,研究发现IPA可能会部分溶解钙钛矿薄膜,导致表面重构等不良影响。本研究以带隙约为1.54eV的钙钛矿太阳能电池为对象,探讨了上述胺类分子的钝化效果。
hole-transporting layer for efficient inverted perovskite solar cells发表期刊:《Joule》发表时间:2025年7月1日作者
大学Antonio
Facchetti、Tobin J. Marks教授团队联合在《Joule》上发表题为“High-efficiency, ultra-flexible
organic solar
链接:10.1016/j.joule.2025.101996.创新点:1.双重功能设计首次利用氯丁橡胶(CR)同时作为非挥atile固体添加剂(增强D18分子堆叠,提升电荷传输效率)和增塑剂(通过弹性链
29.3%的转换效率。在湿热测试(85°C,85%相对湿度)超过1000小时后,串联器件保持了初始性能的约95%。(2023年Joule)比较了钙钛矿单结、硅单结和单片式钙钛矿/硅串联太阳能电池的反向偏置
众所周知,MACl是一种能够制备高质量碘基钙钛矿薄膜的神奇添加剂,可改善薄膜形貌并减少缺陷(Joule, 2019, 3, 2179)。然而,即使采用高灵敏度的XPS技术也难以在最终形成的钙钛矿
硅太阳能电池因其技术成熟和高效稳定,目前在全球光伏市场中占据主导地位。然而,单结硅电池的理论效率极限(约29%)一直是制约其进一步发展的瓶颈---当光子能量高于硅的带隙时,多余的能量会以热能形式散失。 近日关于光子倍增方向,麻省理工学院(MIT)领衔的国际团队在激子裂变增强硅太阳能电池领域取得重大突破。他们创新性地利用有机分子材料,成功将硅电池的峰值电荷生成效率提升至(138±6)%,实现