
众所周知,MACl是一种能够制备高质量碘基钙钛矿薄膜的神奇添加剂,可改善薄膜形貌并减少缺陷(Joule, 2019, 3, 2179)。然而,即使采用高灵敏度的XPS技术也难以在最终形成的钙钛矿薄膜中检测到氯元素。因此学界达成共识:MACl添加剂无法融入钙钛矿晶格,且会在热退火过程中挥发。此外,发表于《Science》期刊的另一项研究(Science, 2020, 367, 1097)证明,将碘/溴基钙钛矿前驱体材料与MAPbCl3混合可使氯元素进入钙钛矿晶格,从而调控宽带隙钙钛矿的薄膜带隙。然而,氯元素如何进入钙钛矿晶格,以及不同氯基添加剂在钙钛矿行核结晶过程的作用机制目前仍不明确。
近日,南京理工大学程远航、陕西师范大学刘生忠和扬州大学方志敏在《Nano Research Energy》上发表了题为“Understanding of chlorine incorporation in wide-bandgap perovskites for efficient and stable solar cells”的成果。该研究聚焦于氯元素在宽带隙钙钛矿材料中的掺杂行为,系统解析了氯掺杂对钙钛矿带隙,形核结晶机制及器件稳定性的影响机制。
研究发现,PbCl2中的 Cl 元素凭借其独特的作用机制显著影响钙钛矿性能。由于 PbCl2具有较大的晶格能,在前驱液中难以完全解离,这使得其在旋涂过程中能够作为富Cl位点,促使Cl元素在钙钛矿初始形核阶段便快速嵌入晶格,显著改变钙钛矿带隙。与之不同的是,MACl引入后主要在前驱液阶段解离,通过影响离子结合抑制形核速率,从而促使钙钛矿晶粒均匀生长,但在后续的退火过程中 MACl蒸发,因而无法改变最终钙钛矿薄膜的带隙。

该研究主要通过原位光致发光(PL)光谱技术,探索单一添加MACl、PbCl2及复合添加(MACl+PbCl2)三种体系下,钙钛矿薄膜在旋涂与退火中的形核结晶过程。旋涂过程中,对照组 I/Br 混合钙钛矿的 PL 峰从 712 nm 红移至 729 nm,显示富溴相的成核动力学快于富碘相,而含氯添加剂样品的 PL 强度峰值时间均延迟(4.5~9.1 秒),且旋涂后 PL 峰均出现蓝移(705~717 nm),表明含氯添加剂可延缓形核动力学;退火过程中,对照组 PL 峰进一步红移至 758 nm,对应 I⁻离子掺入富溴相及晶体进一步生长,含 MACl 样品因退火过程中 MACl 挥发,峰位恢复至对照组水平(758 nm),而含 PbCl2及复合添加剂样品的 PL 峰稳定在 740 nm,证实仅 PbCl2可促进 Cl-离子掺入晶格并拓宽带隙。
基于原位 PL 表征结果并结合不同含氯添加剂的晶格能差异,对作用机制进行了系统性阐释:对照组中,由于前驱液未引入 Cl-源,仅形成 PbIx/PbBrx团簇,富溴钙钛矿因更快的形核动力学主导旋涂过程,退火后通过离子重新配位形成化学计量比的 I/Br 混合钙钛矿薄膜;含 MACl 的样品中,因其晶格能较低(629.6 kJ/mol),在溶液中迅速解离为 MA+和 Cl-,游离离子抑制 Pb2+与卤素离子的结合速率,从而延缓富溴/富碘核的形核动力学,但 MACl在退火过程中 Cl-随 MA+挥发脱离体系,未参与晶格构建;含 PbCl2的样品因高晶格能(2244.9 kJ/mol)在前驱液中形成PbClx团簇,旋涂过程中作为富 Cl 位点促进 Cl-掺杂嵌入钙钛矿晶格,退火后形成均匀的 I/Br/Cl 三元混合相,从而显著拓宽带隙;MACl+PbCl2复合添加剂体系中,PbCl2主导 Cl-掺杂过程,MACl 仅通过溶液相离子调控延缓成核,其挥发性使其在退火后不影响钙钛矿带隙。
原位PL光谱技术已被广泛应用于研究钙钛矿形核结晶的过程,此前南京理工大学程远航已联合香港城市大学Sai-Wing Tsang在该研究方向发表多篇相关论文,包括原位PL光谱研究混合卤化物钙钛矿中富Br及富I钙钛矿相的结晶动力学差异(Small Methods, 2024, 8, 2300899);原位PL光谱研究混合卤化物钙钛矿相分离微观机制(Adv. Funct. Mater., 2025, 35, 2404255);原位PL研究钙钛矿薄膜生长受环境温度的影响机制(Adv. Mater., 2024, 36, 2307635;ACS Energy Lett., 2025, 10, 647-657);原位PL光谱技术研究不同基底对钙钛矿埋底界面的影响机制(Angewandte Chemie, 2025, e202502994)。
索比光伏网 https://news.solarbe.com/202506/11/390219.html

