量子

量子,索比光伏网为您提供量子相关内容,让您快速了解量子最新资讯信息。关于量子更多相关信息,可关注索比光伏网。

26.02%空穴传输材料P3CT-TBB!华东师范大学方俊锋&李晓冬用于高效倒置钙钛矿太阳能电池的厚度不敏感聚合物空穴传输层来源:钙钛矿学习与交流 发布时间:2025-07-08 09:54:19

PSCs 的外量子效率(EQE)和集成短路电流(Jsc)曲线。图 5. 器件稳定性(A) 未封装的 P3CT-TBB 基和 P3CT 基钙钛矿太阳能电池(PSCs)在 65°C 连续光照下进行最大功

极电光能获评钙钛矿领域首个省级“近零能耗”建筑示范项目来源:极电光能 发布时间:2025-07-07 09:57:42

目采用极电光能联合中建八局定制开发的全球首创“龙鳞”钙钛矿光伏瓦系统,集成钙钛矿量子点技术、低反射率涂层等前沿科技,在实现21.7%光电转化效率的同时兼具遮阳调温功能,真正让光伏成为建筑美学的一部分。从

榴莲提取的有机硫分子修饰界面杭州电子科大严文生/周勤&福建物构所高鹏AFM通过鲁棒分子桥构建稳定掩埋界面用于高性能钙钛矿光伏来源:钙钛矿学习与交流 发布时间:2025-07-03 09:43:51

(ETL)的器件的扫描电子显微镜(SEM)横截面图。b) 基于 SnO₂和 SnO₂/DLEO 电子传输层的器件的电流 - 电压(J-V)曲线,c) 外量子效率(EQE)光谱,以及 d) 带有抗反射

柔性全钙钛矿叠层电池认证效率24.01%!电子科技大学材料与能源学院副院长团队:空穴传输界面的双边锚定策略!来源:钙钛矿太阳能电池之基石搭建 发布时间:2025-07-02 10:15:27

钙钛矿太阳能电池的电流密度-电压特性曲线。b) 稳态功率输出及c) 外量子效率曲线对比。d) 3000次弯曲循环后(弯曲半径R=10 mm)两组器件效率保持率及e) 截面扫描电镜形貌对比。f

前沿光伏技术之激子倍增——让光生载流子倍增的太阳炼金术(一)来源:爱旭研发中心 发布时间:2025-07-01 09:35:32

效率上限为33%。然而,激子倍增(multiple exciton generation,MEG)现象的发现打破了这一瓶颈——特定无机物量子点(如硫化铅)或有机半导体材料(如并五苯)中,单个高能
光子可产生多个激子,实现载流子倍增效应,理论上可将光伏效率提升至44%以上。下面将介绍载流子倍增技术的核心原理——激子分裂。二、激子倍增技术的核心——激子分裂图1 无机量子点(a)和有机物(b)的激子

南京理工大学相恒阳、曾海波&苏州大学袁建宇《AM》|延缓酰胺化反应合成低缺陷钙钛矿量子点增强载流子传输助力高效LED和太阳能电池来源:发光材料与器件应用 发布时间:2025-06-25 09:30:21

钙钛矿量子点因其优异的光电特性和溶液法制备的便利性,在太阳能电池和发光二极管领域展现出巨大的应用潜力。然而,在高温热注入合成过程中,配体之间的酰胺化反应会导致PbX2沉淀,进而引发缺陷形成,降低
结果表明,合成的CsPbI3量子点缺陷密度降低,PLQY提高,载流子传输能力增强,基于该量子点制备的LED和太阳能电池性能显著提升,分别达到28.71%的最大外量子效率和16.20%的最高功率转换效率

南京大学最新Nature Energy!钙钛矿技术的终极体现来源:钙钛矿太阳能电池之基石搭建 发布时间:2025-06-24 13:48:05

)光照下的宽带隙(WBG)与窄带隙(NBG)子电池外量子效率(EQE)曲线。d部分展示柔性模块弯曲测试的实验设计。e-f部分分别说明弯曲测试后柔性叠层模块的机械断裂/分层现象及P3区域金属电极分层机制

光子倍增技术在晶硅太阳能电池中的应用来源:晶硅太阳能电池技术 发布时间:2025-06-24 10:35:33

热化和低能光子透过导致约70%的能量浪费。为突破这一瓶颈,光谱转换技术(包括上转换和下转换/量子裁剪)被提出作为有效途径。在这些技术中,光子倍增(即量子裁剪)可以将一个高能光子“切分”为两个或多个低能
光子,潜在地提高光电转化效率。光子倍增与量子裁剪原理量子裁剪(Photon Cutting或Downconversion)是指一种吸收一个高能光子并发射两个(或以上)低能光子的非线性光学过程,其总

上海大学王生浩&重庆文理学院李璐&程江 AFM:热调控法制备2D钙钛矿近红外光电探测器:弱光成像新突破来源:印刷钙钛矿光电器件 发布时间:2025-06-24 09:41:10

传统铅基2D钙钛矿因强量子限域效应通常具有较大带隙(1.6 eV),限制了其在近红外(NIR)波段的应用。鉴于此,重庆文理学院李璐、程江和上海大学王生浩等人通过热调控法制备了高结晶性、厚吸收层且

青岛大学刘亚辉 AM:20.4%! 3D 架构受体用于具有低电压损耗的高效有机太阳能电池!来源:钙钛矿人 发布时间:2025-06-24 09:10:45

调节这些分子的聚集行为,从而提高受体材料的光致发光量子产率 (PLQY) 值并减少相应器件中的非辐射复合电压损失。我们的研究结果表明,降冰片烯单元的引入有效地抑制了过度的分子聚集,并显着提高了受体
:这种受体展现出高的光致发光量子产率和适中的结晶度,平衡了电池的效率和稳定性。低电压损失:采用这种受体的有机太阳能电池实现了高效率和低电压损失。研究内容:该研究专注于通过分子设计来提高电子受体的性能