此外,锂螯合作用固定了水分子,减缓了湿气侵入。结构优化与性能提升:Li螯合使π–π堆积距离缩短,聚合物结晶度提高,空穴迁移率显著增强,器件效率从11.8%提升至13.7%。
混合卤素CsPbClBr钙钛矿量子点已成为纯蓝色发光二极管的有力候选材料。本文郑州大学姚纪松和宋继中等人提出了一种阳离子-阴离子对辅助合成策略,用于制备高质量的CsPbClBrQDs。得益于这种阳离子-阴离子对的协同钝化效应,QDs的光致发光量子产率从42%提升至86%。同时,QDs表现出高结晶质量,有利于载流子传输。本研究表明,协同离子对钝化策略是实现高效稳定纯蓝色钙钛矿LED的一种实用设计方法。
钙钛矿量子点具有成本低、合成工艺简单、光谱连续可调等多种优势,近年来备受关注,发展迅猛,器件外量子效率已提高至20%以上。通常,研究人员会使用极性溶剂清洗多余的配体,以获得配体密度合理的钙钛矿量子点。图1.分子锚的设计及理论计算图2.器件光电性能图3.器件稳定性近日,清华大学化学系马冬昕、段炼团队提出了一种晶格匹配的多位点分子锚设计策略,实现了高效稳定的钙钛矿量子点发光器件。
9月9日,国网浙江电力在绍兴新昌首次开展分布式能源聚合业务数据的量子加密传输,为分布式新能源安全消纳提供了“量子级防护”。随着能源结构转型的推进,分布式能源已逐渐成为电网的重要力量。该方案首次实现电力领域125公里长距离“光纤+量子”数据加密传输,较传统量子加密传输距离提升30%。该公司还将本次试点应用扩展至储能站、小光伏电站,实现全要素分布式能源“安全入网、高效调度”。
研究意义破解QLEDs稳定性瓶颈:首次通过晶格匹配分子设计实现器件工作寿命超过2.3万小时,推动钙钛矿QLEDs商业化进程。深度解析图1展示了晶格匹配的多位点锚定分子设计策略。图4展示了量子点发光二极管的器件性能。结论展望本研究通过精准设计晶格匹配多位点锚定分子TMeOPPO-p,实现了钙钛矿量子点表面缺陷的有效钝化与晶格稳定,成功制备出EQE近27%、工作寿命超过2.3万小时的高性能QLED器件。
钙钛矿量子点发光二极管在过去几年中取得了令人瞩目的进展,实现了超过25%的外部量子效率。通常,研究人员会使用极性溶剂以清洗多余的配体,以获得配体密度合理的量子点。近日,清华大学化学系马冬昕、段炼团队提出了一种晶格匹配的多位点分子锚设计策略,实现了高效稳定的钙钛矿QLED。这些结果表明,本工作为按需设计符合钙钛矿晶格性质的功能分子提供了新见解,并提供了突破未来实际应用瓶颈的可能性。
混合卤化物溴碘钙钛矿量子点为红色钙钛矿发光二极管提供了出色的光谱可调性,但表面缺陷会促进卤化物迁移和非辐射复合,从而降低器件性能。后处理策略在乙腈中使用短而强结合的无机配体同时蚀刻富铅表面并钝化CsPb3PeQD中的缺陷。乙腈通过强Pb配位温和地去除铅缺陷,同时保持QD完整性,这与DMSO或DMF等极性溶剂不同,DMSO或DMF会损坏PeQD。KSCN和GASCN牢固吸附以钝化不配位的Pb位点,产生具有增强PLQY、提高稳定性和优异薄膜电导性的高质量PeQD。
胶体InSb量子点在红外光电探测领域具有巨大潜力。这种双功能策略实现了有效的表面钝化并增强了载流子传输,使InSbQDs薄膜的空穴迁移率达到前所未有的1.4cmVs。首次实现了在室温下工作的中波红外InSb量子点红外光电探测器,最大探测波长超过3μm。这项工作标志着朝着室温可操作且无重金属量子点的中波红外探测器迈出了重要的一步。
甲脒碘化铅钙钛矿量子点因其优异的光电性能和溶液可加工性,在新一代光伏应用中展现出巨大潜力。最终,FAPbIPQDSCs实现了高达19.14%的功率转换效率,为目前该类型电池的最高效率。创纪录器件效率:CSME处理的FAPbIPQDSCs实现19.14%的效率,是目前该类型电池的最高值,同时器件表现出更低的迟滞效应和更高的稳定性。
开发多样化的光伏器件架构对提升光电转换效率(PCE)及实现与其他光伏材料的高性能叠层集成至关重要。尽管n-i-p结构在PbS胶体量子点(CQD)太阳能电池发展中占主导地位,但p-i-p结构的效率长期滞后,限制了其进一步发展。