矿工染上矽肺病(silicosis)。
石英砂挖掘出来后,首先透过电弧炉将石英砂还原成冶金级的矽(metallurgical Grade Silicon,MGS),大多用于炼钢,在这一阶段中
,需要输入大量的能源来保持电弧炉的高温,而所产生的二氧化碳与二氧化硫,对施作人员与环境危害较轻。
下一阶段则是将冶金级的矽精炼,除去内部的杂质,让矽的纯度更高,精炼过程包括将氢氯酸
矽肺病(silicosis)。石英砂挖掘出来后,首先透过电弧炉将石英砂还原成冶金级的矽(metallurgical Grade Silicon,MGS),大多用于炼钢,在这一阶段中,需要输入大量的能源来
保持电弧炉的高温,而所产生的二氧化碳与二氧化硫,对施作人员与环境危害较轻。下一阶段则是将冶金级的矽精炼,除去内部的杂质,让矽的纯度更高,精炼过程包括将氢氯酸(hydrochloric acid)加入冶金
BIPV构件产品。支持铜铟镓硒薄膜电池生产工艺技术研发,特别是大规模柔性铜铟镓硒卷对卷连续生产工艺,提升转换效率,降低生产成本。及时跟进高效率砷化镓及有机薄膜电池技术产业化进程;支持还原、氢化等多晶硅
生产设备、大容量高效率多晶铸锭炉和单晶炉、多线切割机、硅片测试分选设备、多晶在线制绒设备、减压扩散炉、全自动丝网印刷机等的研发与产业化。研发晶硅太阳能电池自动化生产线,实现整线交钥匙能力。加快高效电池用
二氧化硅直接还原生成硅,完成了第二阶段技术的实证。此后建造更大的反应炉并转移到阿尔及利亚进行实验,在当地成功实现了生产。据了解,这种制造方式消耗的能源不及传统工序的五分之一。
将来计划在日照
碱性溶液,再用酸中和并使其沉淀,便可提高沙子的主要成分二氧化硅的纯度,实现了第一阶段的技术。
此外,弘前大学副教授伊高健治等人用日本青森市的高温反应炉,在不进行盐酸处理的情况下用碳将
溶于碱性溶液,再用酸中和并使其沉淀,便可提高沙子的主要成分二氧化硅的纯度,实现了第一阶段的技术。此外,弘前大学副教授伊高健治等人用日本青森市的高温反应炉,在不进行盐酸处理的情况下用碳将二氧化硅直接还原
生成硅,完成了第二阶段技术的实证。此后建造更大的反应炉并转移到阿尔及利亚进行实验,在当地成功实现了生产。据了解,这种制造方式消耗的能源不及传统工序的五分之一。将来计划在日照强烈的沙漠中铺上以此造出的
二氧化硅直接还原生成硅,完成了第二阶段技术的实证。此后建造更大的反应炉并转移到阿尔及利亚进行实验,在当地成功实现了生产。据了解,这种制造方式消耗的能源不及传统工序的五分之一。据悉,研究者将来计划在日照
沙子溶于碱性溶液,再用酸中和并使其沉淀,便可提高沙子的主要成分二氧化硅的纯度,实现了第一阶段的技术。此外,弘前大学副教授伊高健治(47岁)等人用日本青森市的高温反应炉,在不进行盐酸处理的情况下用碳将
处理的情况下用碳将二氧化硅直接还原生成硅,完成了第二阶段技术的实证。此后建造更大的反应炉并转移到阿尔及利亚进行实验,在当地成功实现了生产。据了解,这种制造方式消耗的能源不及传统工序的五分之一。据悉
研究结果发现,先将沙子溶于碱性溶液,再用酸中和并使其沉淀,便可提高沙子的主要成分二氧化硅的纯度,实现了第一阶段的技术。此外,弘前大学副教授伊高健治(47岁)等人用日本青森市的高温反应炉,在不进行盐酸
中和并使其沉淀,便可提高沙子的主要成分二氧化硅的纯度,实现了第一阶段的技术。此外,弘前大学副教授伊高健治(47岁)等人用日本青森市的高温反应炉,在不进行盐酸处理的情况下用碳将二氧化硅直接还原生成硅
,完成了第二阶段技术的实证。此后建造更大的反应炉并转移到阿尔及利亚进行实验,在当地成功实现了生产。据了解,这种制造方式消耗的能源不及传统工序的五分之一。据悉,研究者将来计划在日照强烈的沙漠中铺上以此造出的
硅烷流化床法技术取得了阶段性的成果,为公司的科技战略、成本战略及产品战略的实施奠定了坚实的基础。
硅烷(SiH4)是以四氯化硅氢化法、硅合金分解法、氢化物还原法、硅的直接氢化法等
方法制取。然后将制得的硅烷气提纯后在热分解炉生产纯度较高的棒状多晶硅。
硅烷流化床新技术项目完成了全球最大规模的万吨级硅烷制备装置,已建成投产的3000公吨/年流化床为目前全球最大的单台流化床
现代化。
中能多晶硅的生产流程分为精馏、还原、尾气回收、氯氢化四个工序。厂区内高达几十米的精馏塔在夜间的光亮会照射到整个工厂,十分壮观。
自协鑫2006年杀入多晶硅行业后,市场上多晶硅的价格一路上
,我连长晶炉、切片机等核心设备都没见过,这是一个完全不同的行业。朱战军说,当时老板(朱共山)跟我说,给你钱,春节前必须出产品。
朱共山说这话的时间是2009年6月份,按照军令状,8个月后不仅要建完