唯一通讯作者,华南理工大学为第一完成单位,论文合作者包括德国Christoph J.
Brabec教授,瑞典林雪平大学高峰、王锋教授,香港中文大学路新慧教授,国家纳米中心丁黎明研究员等。该工作得到
博士学位(师从严克友教授),并先后在华南理工大学(合作导师严克友教授)和香港中文大学(合作导师路新慧教授)从事博士后研究。主要从事半导体功能纳米材料合成、无机钙钛矿太阳能电池以及叠层器件的研究,取得了
热蒸发或溅射制备。挑战在于金属离子迁移导致器件退化、真空工艺成本高新兴希望:碳电极!碳纳米管(CNTs):干法转移(FCCVD制备)或溶液法涂布。兼具高导电、一定透明度、优异柔性和化学惰性,已展现超越
至关重要。机械测试(柔性器件):膜厚、纳米压痕、循环弯折测试,柔韧性和耐用性稳定性:光(相)稳定性、热稳定性钙钛矿电池的应用前景:不止于屋顶建筑一体化光伏(BIPV):半透明特性使其完美融入窗户、幕墙
、去离子水和乙醇中超声清洗 15 分钟,随后烘干。衬底在旋涂 NiOx 纳米颗粒(30 mg NiOx 纳米颗粒分散于 1 ml 去离子水)前经紫外处理 15 分钟,并转移至氮气手套箱。将
,其单位重量功率为 23W g-1,PCE为12%。Kang 等人使用正交银纳米线 (AgNWs) 作为底部透明电极的材料,制造了一种 PCE 为 15.18%、单位重量功率为 29.4 W
策略,通过分子级互锁导电弹性体来调和这些相互冲突的要求。通过在电子传输层(ETL)中嵌入三维互穿导电弹性体网络,利用动态键的塑性实现动态应力耗散。该策略通过Ag配位增强的纳米复合物键合产生梯度模量界面
测试(纳米压痕,ND)后的断裂行为。b)
不同PIL-PDES含量的PNDIT-F3N薄膜在50%应变下的光学显微镜(OM)图像。c) 不同PIL-PDES含量(PNDIT-F3N:PIL-PDES
钙钛矿太阳能电池PSCs市场潜力巨大,3D打印可能又一个重大技术应用方向。来自杭州微导纳米科技有限公司、浙江科技学院土木工程与建筑学院、浙江大学光电科学与工程学院等机构的科研人员在Science上
混合卤化物钙钛矿发光二极管面临着场相关相分离的关键挑战。用配体锚定的离散胶体CsPbX3纳米晶体有望抑制相分离,但当其作为发射膜集成到LED中时,离子迁移如何进行仍是一个谜。具体而言,需要分离单个
纳米晶体内部或沿电场方向跨纳米晶体的离子迁移对PeLED性能的影响。鉴于此,浙江大学高贇,戴兴良,叶志镇院士在期刊《Advanced
Materials》上发文“Suppressing
理工大学等团队,在《自然·能源》杂志发表重磅成果:通过优化纳米晶硅空穴接触层的电学性能,成功将硅异质结(SHJ)太阳能电池的转换效率提升至26.81%,并实现86.59%的填充因子(FF),创下单结硅
、隆基的破局之道:纳米晶硅+透明导电层研究团队用p型纳米晶硅(p-nc-Si:H)替代传统非晶硅,并优化透明导电氧化物(TCO)层,实现三大突破:1. 导电性飙升4个数量级纳米晶硅结构:通过等离子体化学
。TOPCon5.0五大核心技术新结构是在电池背面形成微米级“光陷阱”,将红外光吸收效率提升0.3%-0.5%;新机制是通过激光诱导形成纳米级接触点,接触电阻降低至0.5mΩ·cm²以下;新工艺通过新型
介孔二氧化硅层(MSN-SH)作为埋底界面的超结构,有效调控锡铅(Sn-Pb)钙钛矿薄膜的结晶过程,消除纳米孔隙,钝化缺陷并抑制Sn(II)的氧化,显著减少载流子损失并提升器件稳定性。基于此,锡铅
模拟1太阳光照下运行445小时后仍保持初始效率的90%。该研究为全钙钛矿叠层电池的界面工程提供了新思路。研究亮点1.界面工程创新:通过巯基功能化介孔二氧化硅(MSN-SH)超结构调控埋底界面,消除纳米