结论展望本研究通过创新性再生氧化还原循环策略,成功实现Sn持续还原与双位点缺陷钝化,使锡钙钛矿电池效率提升至15.15%,并在1100小时MPPT循环及5000小时存储中保持极高稳定性。该工作为解决锡钙钛矿氧化难题提供了可持续解决方案,为无铅钙钛矿光伏器件的实际应用奠定了坚实基础。未来通过分子结构优化与循环动力学调控,有望进一步推动锡钙钛矿电池迈向产业化。
户用领域:溢价产品价格下跌,性能产品价格反弹8月最引人注目的发展来自户用市场。这是今年以来首次出现显著下跌,表明供应状况正在缓解,溢价供应商之间的竞争正在加剧。相比之下,性能导向品牌的价格走势则相反。其结果是溢价和性能产品之间的价差正在缩小,尽管两者之间的差距仍接近100%,这突显了电池市场固有的结构性鸿沟。2025年8月电池品牌前五名华为连续第三个月巩固了其领先地位,位居榜首。
文章概述本研究设计了一系列基于蒽醌的氧化还原介体,通过选择性还原碘和氧化金属铅,同时钝化缺陷,有效抑制了宽禁带钙钛矿的卤化物相分离。进一步构建钙钛矿-有机叠层电池,效率达25.22%,T90500小时,兼具高效率和长期稳定性。创新点分析1)在蒽醌-2-磺酸盐骨架上引入-SO基团,调控氧化还原电位,实现Pb氧化与I还原的协同作用。2)提出“电子穿梭”机制:AQS介导Pb→Pb和I→I的循环反应,阻断卤化物迁移路径。
科学家最新发现,采用1,3-二氨基丙烷二氢碘化物均匀涂覆钙钛矿层表面,可将钙钛矿硅叠层电池的转换效率提升至33.1%,并延长器件的户外长期稳定性。然而,在这种大型金字塔绒面上制备钙钛矿叠层需克服一系列困难,因此吸引了众多研究团队参与攻关。此次的钙钛矿表面钝化方案,是该领域的最新突破。该研究团队还发现,钙钛矿表面钝化可提升整个钙钛矿层的电导率,进而提高叠层电池的填充因子。
在无预沉积空穴传输层的钙钛矿太阳能电池中,利用自组装分子建立低阻钙钛矿/ITO接触对实现高效空穴传输至关重要。ATAA的小分子尺寸和与DMAcPA的分子间相互作用,使其能均匀分散于大尺寸DMAcPA之间,促进致密分子排列,有效抑制聚集,提升空穴传输效率。实现高效率与高稳定性:倒置PSCs效率高达26.64%,并在1000小时连续光照下保持98.5%的初始效率,显著提升器件稳定性。
阻碍钙钛矿太阳能电池的持续挑战之一在于其空穴传输层的制备方式。结果是双重好处—精确掺杂的有机半导体和消除破坏稳定性的移动锂离子。当集成到钙钛矿太阳能电池中时,其结果令人印象深刻。通过简化掺杂工艺,同时解决锂离子迁移问题,电解掺杂既能提供更高的性能,又能提供更高的可靠性。它代表着钙钛矿太阳能电池不仅在实验室中创下记录,而且足够实用和稳定,适合实际部署的重大进步。
论文概览深圳技术大学王宇飞与张光烨团队以及陈义旺教授通过热基板工艺调控顺序沉积活性层的热力学过程,显著提升了D18/Y系列受体基二元有机太阳能电池的性能与稳定性。深入精读图1:热成像与工艺对比实时热成像显示HS工艺将热调制时间延长至30秒以上,显著高于传统热溶液法(1秒)。图5:普适性与稳定性在2PACZ为空穴传输层时,D18/L8-BO体系效率达20.64%。MPPT测试显示HS器件270小时后仍保持90%效率,优于对照组(85%)。
Spiro-OMeTAD因其能级匹配良好和界面兼容性优异,一直是高效钙钛矿太阳能电池中的基准空穴传输材料。本综述韩国化学技术研究院NamJoongJeon和蔚山国立科学技术院DongSukKim等人从机理角度系统阐述了Spiro-OMeTAD基空穴传输层中掺杂剂诱导的不稳定性,揭示了其在工作应力下性能损失的物理化学根源。兼顾高效与稳定:通过分子设计与掺杂工程,实现了Spiro-OMeTAD基器件在26%以上效率的同时,具备长达1000小时以上的操作稳定性,推动其商业化进程。
尽管Ruddlesden-Popper型准二维钙钛矿在红、绿、蓝光发光二极管中取得了外量子效率超过20%的成果,但其光谱稳定性和工作稳定性仍是制约其进一步发展的主要挑战。该策略为准二维钙钛矿的构建提供了新思路,实现了蓝光钙钛矿LED的高效与高稳定性。文章亮点混合型结构设计:通过RP型与DJ型钙钛矿的混合,结合PentA与PentDA双胺阳离子,实现了相分布调控与范德瓦尔斯间隙的消除,显著提升材料稳定性和发光效率。
3,7-POPA不仅能促进钙钛矿的定向结晶和缺陷最小化,还能优化空穴选择性界面的能级对齐,显著提升空穴提取效率。该策略为高性能溴基PSCs的效率与稳定性设立了新标杆。文章亮点多功能SAM设计:3,7-POPA分子通过双结构实现对NiO界面的强结合、钙钛矿定向结晶诱导和缺陷钝化,一举解决溴基PSCs的多重界面问题。创纪录的高Voc与效率:器件Voc高达1.51V,PCE达10.79%,是目前溴基FAPbBrPSCs中的最高水平之一。