在钙钛矿太阳能电池(PSCs)中,通过界面修饰来缓解载流子传输障碍并抑制非辐射复合,对提升电池效率和稳定性至关重要。
然而,常用的咔唑基磷酸类SAMs与透明导电氧化物及钙钛矿的结合力较弱,导致界面粘附性不足,限制了器件稳定性。本研究美国西北大学BinChen、LinX.Chen和EdwardH.Sargent等人通过设计高偶极矩的给体-π-受体型SAM分子PAFTB,增强界面静电相互作用,同时优化其功能基团的化学锚定能力。实验表明,PAFTB的界面粘附强度是传统2PACz的2.8倍,显著提升了器件热稳定性。效率与工艺优化:PAFTB器件认证效率达24.9%,填充因子提升至84%,得益于界面缺陷钝化和载流子寿命延长。
本研究印度理工学院SormathMahato和SamitK.Ray等人通过双Cs校正高角度环形暗场扫描透射电子显微镜,首次在原子尺度上揭示了混合卤化物钙钛矿纳米晶中Ruddlesden-Popper缺陷的精确结构。RPFs和晶界的应变分析表明,这些缺陷未引入深能级陷阱,反而通过局域载流子增强了辐射复合。文章亮点原子级缺陷调控:首次通过HAADF-STEM实现RPFs和GBs的原子级成像,揭示其无深能级陷阱特性,为缺陷工程提供新视角。
倒置(p-i-n)钙钛矿太阳能电池(PerSCs)相较于传统(n-i-p)结构,有望克服传输层的吸湿性限制。然而,其性能和稳定性常受限于疏水性空穴传输层的润湿性差及钙钛矿中的非辐射复合问题。本研究宁夏师范学院魏娟娟、阎云,北京化工大学于润楠和谭占鳌等人采用新型π共轭有机碱金属离子盐(Phen-OX)作为界面修饰材料,其兼具疏水性配体骨架和亲水性碱金属离子基团,具有两亲性。通过Phen-OX修饰阳极界面,可显著改善聚[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)表面的润湿性,并提升钙钛矿薄膜质量。此外,Phen-OX中的菲咯啉单元能与钙钛矿中未配位的Pb²⁺缺陷配位,抑制非辐射复合。同时,Phen-OX还促进钙钛矿结晶,最终实现效率达25.50%的高性能器件,并显著提升稳定性。
然而,宽带隙钙钛矿太阳能电池的本征不稳定性主要归因于多重离子迁移所引起的空位缺陷。本工作为利用超分子策略提升混合卤素宽带隙钙钛矿薄膜质量及其光照稳定性开辟了新途径。此外,得益于冠醚环外侧疏水氢原子的疏水屏障效应,冠醚修饰的WBGPSC展现出优异的湿度稳定性。进一步地,冠醚修饰的两端(2-T)全钙钛矿TSC效率高达28.44%。
大正微纳的全球首个轻质柔性钙钛矿太阳能电池户外示范项目,自2023年7月启动以来就吸引了众多关注的目光。如今,该示范项目已经稳定运行了两年,为钙钛矿太阳能电池的商业化应用注入了一剂强心针。大正微纳将持续关注户外示范的发电监测,进一步优化产品性能和稳定性。
据国家知识产权局信息,比亚迪股份有限公司申请的一项名为一种钙钛矿电池、叠层电池、光伏组件的发明专利于2025年8月1日公开。然而效率提升的同时,稳定性问题始终如影随形。当前钙钛矿电池面临的主要挑战包括界面缺陷导致的非辐射复合、大面积制备的均匀性难题,以及长期户外使用的衰减问题。比亚迪的发明专利提供一种钙钛矿电池,该钙钛矿电池中引入第一界面层和/或第二界面层,可以显著提高电池的光电转化效率以及高温稳定性。
《通知》明确将海上风电、陆上风电、光伏、储能及虚拟电厂等纳入涉网安全管理范围,要求并网主体严格遵循国家标准,确保设备配置与系统运行满足安全稳定需求,同时压实电力调度机构、电网企业及业主单位的三方责任。
香港科技大学(科大)、耶鲁大学、劳伦斯伯克利国家实验室和洛桑联邦理工学院的工程学院(SENG)的研究团队推出了全面的仿生多尺度设计策略,以应对钙钛矿太阳能电池商业化的关键挑战:长期运行稳定性。这些战略从自然系统中汲取灵感,旨在提高太阳能技术的效率、弹性和适应性。
导语钙钛矿太阳能电池的效率已媲美单晶硅电池,但长期稳定性问题阻碍其商业化进程。近日,研究团队在《AdvancedMaterials》发表重磅研究,设计了一类基于螺-吩噻嗪的新型空穴传输材料,其中氟功能化衍生物在小面积电池中实现25.75%的认证效率,25cm组件效率达22.07%,并在ISOS-L3老化测试中保持80%效率超过1000小时,性能与稳定性全面超越传统Spiro-OMeTAD!核心创新点分子设计突破:以螺-吩噻嗪为核心骨架,通过不对称引入萘基、氟代芳烃或芴基调控能级与热稳定性。