南京工业大学和中山大学的研究人员研究了锂阳离子掺杂剂如何影响钙钛矿太阳能电池,揭示了现实的明暗循环过程中的临界不稳定性。为了解决这种不稳定性,研究人员用甲基铵取代锂作为空穴传输层掺杂剂;甲基铵没有迁移或未反应的残留物,保持了钙钛矿相的完整性。这项工作强调了锂驱动的相降解是钙钛矿稳定性的隐藏威胁,并提出了甲基铵掺杂作为一种稳健的解决方案,为在现实条件下设计耐用的钙钛矿太阳能电池制定了清晰的策略。
传统的有机空穴传输层在钙钛矿太阳能电池中需经历复杂耗时的氧化过程,并伴随大量残留Li,影响器件稳定性。本文提出一种新型电解掺杂策略,通过调控电解过程实现可控掺杂并有效去除Li。文章亮点总结提出新型电解掺杂策略:利用电化学氧化还原反应实现有机半导体的可控掺杂,同时有效去除有害的Li残留,显著提升器件稳定性。
8月29日,国家能源局召开全国可再生能源电力开发建设(8月)调度视频会。国家能源局党组成员、副局长万劲松出席会议并讲话。国家发展改革委、国家能源局有关司(局),各省(区、市)及新疆生产建设兵团能源主管部门,国家能源局派出机构,有关电网企业、发电企业,水电总院、电规总院、国家发展改革委能源研究所、中国可再生能源学会风能专业委员会、中国光伏行业协会、中国水力发电工程学会等单位有关负责同志参加会议。
研究意义破解QLEDs稳定性瓶颈:首次通过晶格匹配分子设计实现器件工作寿命超过2.3万小时,推动钙钛矿QLEDs商业化进程。深度解析图1展示了晶格匹配的多位点锚定分子设计策略。图4展示了量子点发光二极管的器件性能。结论展望本研究通过精准设计晶格匹配多位点锚定分子TMeOPPO-p,实现了钙钛矿量子点表面缺陷的有效钝化与晶格稳定,成功制备出EQE近27%、工作寿命超过2.3万小时的高性能QLED器件。
多官能团协同钝化技术实现 25.33% 效率与 1500h 长效稳定
无电子传输层钙钛矿太阳能电池因其制备工艺简单、成本低廉而备受关注,但载流子非辐射复合和界面能带失配严重限制了其性能。本文青岛科技大学张家康和周忠敏等人提出了一种离子介导的自修复策略,在钙钛矿埋底界面引入硫酸铟功能层。硫酸铟的引入有效改善了ITO/钙钛矿界面的接触性能和能带对齐,最终实现了22.97%的光电转换效率。该器件在连续光照1200小时后仍保持91.6%的初始效率,为无电子传输层钙钛矿太阳能电池的开发与应用提供了新思路。
混合卤化物溴碘钙钛矿量子点为红色钙钛矿发光二极管提供了出色的光谱可调性,但表面缺陷会促进卤化物迁移和非辐射复合,从而降低器件性能。后处理策略在乙腈中使用短而强结合的无机配体同时蚀刻富铅表面并钝化CsPb3PeQD中的缺陷。乙腈通过强Pb配位温和地去除铅缺陷,同时保持QD完整性,这与DMSO或DMF等极性溶剂不同,DMSO或DMF会损坏PeQD。KSCN和GASCN牢固吸附以钝化不配位的Pb位点,产生具有增强PLQY、提高稳定性和优异薄膜电导性的高质量PeQD。
研究意义破解昼夜循环稳定性瓶颈:首次明确锂迁移是明暗交替条件下器件失效的主因,并提出有效替代方案。结论展望本研究通过揭示锂离子在昼夜循环条件下的迁移与相变机制,提出并验证了一种新型无锂掺杂剂MATFSI,成功解决了钙钛矿太阳能电池在实际运行中的稳定性瓶颈。
针对上述问题,本文采用实时热成像来揭示在热基板上的活性层膜的顺序处理期间的温度受控组装动态。与广泛采用的热溶液技术相比,HS工艺在SqP过程中为活性层提供了更高的温度和更长的加热时间,从而加速了底层的液相重组和成核。HS诱导的界面能差促进层的相互渗透,并在有源层的底部区域实现合适的给体含量,同时促进激子的产生。值得注意的是,HS处理的300nm厚的二元器件实现了超过18.12%的效率。
本文大连理工大学贺高红和姜晓滨等人提出了一种基于多级微流控的外延生长策略,实现了对CsPbBrNCs结构参数和核壳构型的精确多级控制。通过利用微通道内的准一维热流场,成功解耦了CsPbBr的成核与生长过程。进一步在CsPbBr上外延生长无铅CsSnBr双钙钛矿壳层,形成I型能带对齐的核壳异质结构。所得核壳纳米晶表现出显著增强的光学性能和稳定性,在环境暴露75天后仍保持完整的晶格结构。