第一作者:王立锋
通讯作者:余彦单位:中国科学技术大学
室温钠硫(RT Na-S)电池因具有高能量密度高(1274 Wh kg-1)和低成本等优势而受到众多关注。然而,由于硫电极的电子电导差
作为硫的载体材料。中空碳结构可以提高复合电极的导电性,缓解电极在充放电过程中的体积膨胀;FeNi3纳米颗粒可以提高对多硫化物的吸附,催化其快速转化进而增强硫的利用率。得益于理论计算的精准预测及合理的
这种电池的性能,但发现这种化学物质实际上已经稳定下来,这使电池具有一定程度的可充电性。随后的调查促使该团队开发了一种新的电极材料,该材料由多孔碳制成,像海绵一样,吸收了不稳定的氯分子并安全地储存起来
作用。 超小尺寸铂基金属间化合物在燃料电池膜电极中的结构设计与优化 该项研究基于超小尺寸铂基金属间化合物从纳米到介观尺度系统优化了催化剂在燃料电池膜电极中的结构设计并实现高性能
设备,纯净水制造设备,研磨机/分配器/混合器,清洁设备,熔炉/干燥炉/烧成炉,电脑辅助制造等 C. 燃料电池关键部件及供应技术: 电极/催化剂,膜电极组,其它电池堆材料,气体扩散膜,隔离膜,热利用
典型场景,采用多能互补技术,应用平高集团储能、电极式电锅炉、智慧能源站等核心设备,开展风光储充多能互补、清洁供冷供热、智慧配用电等项目开发和建设。建成国网上海张江服务基地新一代绿色智慧楼宇、国内第一代
了一种具有晶格匹配的形貌异质结的三元合金基光阳极,该电极的光谱吸收范围扩展到了1100纳米,其光电化学制氢的能量转换效率得以改善。晶格匹配的形貌异质结由于避免了晶格失配的影响而降低了界面缺陷的存在
增长了十倍有余。
在改进和创造电池设计的道路上,科学家已经广泛注意到了地球蕴藏丰富的钠,是目前锂离子电池的优秀替代者。这些钠离子电池的功能很像今天的锂离子电池,通过在液态电解质中的一对电极
之间穿梭离子来发电,但就目前而言,它们的性能还不尽如人意。
部分原因是钠离子的尺寸比锂离子大,所以它们不能很好地与由石墨烯堆叠层组成的石墨电极融合。通常情况下,随着电池的循环,离子将自
领域 公司与中科院大连化物所、上海交通大学、南京大学等高校通过产学研相结合的一体化模式,开展膜电极、电堆、氢燃料电池动力系统全链条工程化的研发生产,并为国内车企配套燃料电池动力系统,为企业提供
研发布局。
在氢能终端应用产业领域,北京的整体技术水平与产业化能力国内优势地位明显。膜电极、双极板、空压机等质子交换膜燃料电池关键材料、部件环节已基本实现自主化,质子交换膜、催化剂、碳纸等依赖进口的
差距。重点突破膜、炭纸、催化剂、双极板、膜电极、氢气再循环泵、空压机等质子交换膜燃料电池关键材料、部件批量制备技术,车用燃料电池安全监管保障技术,固体氧化物燃料电池热电联供系统技术。
5.关联技术领域
逐渐展现在了人们面前。 精益求精 成效显著 经过客户测试,首批产出的柔性钙钛矿薄膜基板,运用优化的超短激光脉冲工艺,有选择性地除掉吸收层,划掉背电极层,且不损坏基底,在