干货|金刚线添加剂电池的工艺优化

来源:摩尔光伏发布时间:2017-12-08 12:23:50

索比光伏网讯:针对金刚线直接添加剂法制备的金刚线多晶硅片绒面、反射率及减重与常规砂浆线多晶硅片的制绒差异,本文分析了其对扩散、PECVD和丝网印刷等工艺造成的影响,并就如何匹配各道工艺进行了总结,从而获得高效金刚线多晶电池。

金刚线直接添加剂法虽然可以部分解决金刚线多晶硅片由于表面损伤层浅导致的常规酸制绒带来的反射率高问题,但由于金刚线多晶硅片晶向不同,使得制绒均匀性差、反射率比砂浆线高2%左右,电池转换效率会比砂浆线多晶电池低0.1%左右。目前的市场行情是组件客户需求的太阳能电池发货效率越来越高,因此提高金刚线直接添加剂法的转换效率迫在眉睫。除了依赖添加剂厂家开发更高效的金刚线制绒添加剂,优化扩散、刻蚀、PECVD及丝印等后道工艺也是提高金刚线添加剂制备的电池效率重要途径。因此,针对我们对金刚线直接添加剂实验及量产经验,我对扩散、PECVD及丝网印刷等后道工艺如何更好匹配金刚线添加剂进行了如下总结。

一、关于扩散

一般来说,砂浆线多晶硅片扩散方阻会稍低于金刚线添加剂法制备的金刚线多晶硅片,主要是由于后者片制绒后反射率高2-4%左右,使得比表面积较小且不同晶粒均匀性差所致。当然,由于金刚多晶硅片反射率越高,比表面积越小,因此方阻也会越高。值得我们注意的是,由于金刚线多晶硅片内部不同晶粒晶向差异及表面损伤层浅,使得金刚线多晶硅片制绒后呈现亮暗晶格。一般来说,亮晶格的扩散方阻比暗晶格稍低,可能是由于比表面积或不同晶格的绒面差异导致,当然也不排除四探针测试误差所致。金刚线直接添加剂法制备的绒面比砂浆线硅片绒面小且深,同时亮暗晶格绒面分布极不均匀,因此其方阻均匀性较差,导致扩散方阻的工艺窗口比砂浆线窄,否则极易影响电池的电性能。因此,需十分注意丝网印刷与扩散方阻的匹配,并善于分析造成电性能参数异常的原因等,从而更好的维持产线稳定。

不同供应商的金刚线添加剂制绒后的绒面、反射率及减重都有差异,需要根据不同绒面及反射率特性调整扩散方阻。一般绒面小及反射率偏低时均匀性较差,此时方阻不宜过低,否则可能会导致表面复合严重,影响Uoc和Isc;有时甚至需要适当提高反射率或增大绒面,从而更好的匹配后道工艺,获得最佳转换效率。当然扩散方阻也不宜过高,否则由于金刚线多晶硅片的亮暗晶格均匀性较差,易造成Rs偏高。

总之,需要根据金刚线添加剂制绒后的绒面、反射率及减重等对电池电性能的影响,合理优化扩散方阻,才能得到最优的电池转换效率。

二、关于PECVD

金刚线多晶硅片由于其特殊的二维切割方式,表面损伤层浅、线痕较深,金刚添加剂难以有效去除表面的线痕、降低反射率,因此外观与常规砂浆线电池差异较大。金刚线添加剂法制备的电池外观偏亮、晶格明显,各道的工艺窗口都小于砂浆线,尤其镀膜后的颜色波动较大,产线返工率及管控难度都高于砂浆线。而组件等下游客户一直都在提高其对电池颜色及外观的要求,因此有必要研究金刚线添加剂与常规砂浆线镀膜产生差异的原因,并合理优化PECVD镀膜工艺。

利用金刚线添加剂制备的不同反射率硅片与砂浆线进行系统的PECVD对照实验,并根据太阳能电池的减反射膜原理,本人构思了一种PECVD第一二层减反射膜厚度的计算方法,具体公式为:平均膜厚*平均折射率=第一层折射率*第一层膜厚X+第二层折射率*第二层膜厚(平均膜厚-X),其中X为第一层减反射膜(靠近硅片的底层减反射膜)厚度,单位nm;硅片的平均膜厚和平均折射率可以利用椭偏仪进行测试,第一二层膜理论折射率分别假设为2.35、2.0。下表是同条件下,不同反射率的金刚线添加剂和砂浆线实验硅片镀膜后的平均膜厚及折射率、第一二层膜厚计算结果。由表可知不同反射率的金刚线硅片与砂浆线硅片的镀膜膜厚和折射率差异较大,而且随着反射率升高,第一层膜越来越厚、第二层膜越来越薄,整体折射率越高,那么造成此现象的原因是什么呢?

不同反射率金刚线及砂浆线多晶硅片的绒面如下图所示,由图可知制绒后的反射率越高,绒面出绒率越少,表面越"光滑"。根据减反射膜沉积原理,反射率高时镀膜沉积时所需活化能更少,沉积速度越快,因此第一层膜更厚,这也可能是导致反射率高的硅片镀膜后折射率高的主要原因。砂浆线多晶硅片制绒后的绒面虽然比金刚线多晶硅片大,但反射率更低,导致第一层镀膜速度更慢,从而整体膜厚和折射率都偏低。根据以上结论,金刚线多晶硅片第一层镀膜速度过快,可能会导致膜层质量及颜色均匀性等较差,影响整体电性能及镀膜返工等。因此,需对PECVD镀膜工艺进行优化,适当降低第一层镀膜速度,合理匹配减反射膜的膜厚及折射率,从而获得较高的转换效率和更好的量产稳定性。

三、关于丝网印刷及烧结

金刚线多晶硅片粗线痕、浅损伤层不仅影响PECVD减反射膜的颜色等,还会增加丝网印刷的难度。金刚线直接添加剂法由于减重较低,难以有效去除硅片表面的切割线痕,因此印刷时需注意线痕与细栅的方向。实验发现,金刚线硅片表面的线痕与细栅线垂直印刷时效率会高0.05%左右,但是容易出细栅线高低不平、断栅等现象。而线痕与细栅线平行印刷效率相对偏低,但是印刷质量有保障,虽然偶尔也会出现虚印甚至波浪纹等。同时,由于金刚线多晶硅片表面光滑及不同亮暗晶格绒面差异非常大,容易导致三道的印刷湿重偏低、Rs异常等,需要根据情况调整印刷速度、压力等参数。金刚线多晶硅片不论是利用直接添加剂法制绒,还是干/湿法黑硅制绒,其绒面都是亚微米、甚至纳米级,正电极印刷后易出现拉力不合格、浆料与硅片欧姆接触不好等情况,目前许多浆料厂家都针对此现象改进了正银浆料,但还需引起关注。

四、总结

金刚线添加剂制绒后的绒面、减重和反射率与砂浆线多晶硅片差异较大,因此扩散、PECVD及丝印烧结等后道工艺都需进行针对性的优化和匹配,才能得到最佳的金刚线多晶电池的转换效率。本文就金刚线添加剂实验及量产过程中的相关经验进行了总结与分析,希望得到业界同仁的批评与指正。

索比光伏网 https://news.solarbe.com/201712/08/126960.html

责任编辑:solar_robot
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
金泽大学实施钛矿太阳能电池的铅稳定技术实地测试来源:钙钛矿材料和器件 发布时间:2025-12-09 16:18:43

东芝能源系统公司主导该项目,长州工业株式会社、电通信大学和金泽大学共同实施。该试验涉及将叠层的钙钛矿太阳能电池与铅稳定技术集成到户外测试模块中。该活动计划于2025年8月8日至2026年12月举行。

Joule:用可印刷碳阴极增强p-i-n型钙钛矿太阳能电池的可行性:极性反转的起源来源:知光谷 发布时间:2025-12-09 14:10:16

可印刷的后电极是钙钛矿太阳能电池规模化应用的关键技术。碳电极在n-i-p结构中已广泛应用,但其在p-i-n结构中的应用因界面能量失配而受限。

天津大学叶龙AM:一种通用弹性体增韧剂用于解决高效有机太阳能电池的脆性问题来源:知光谷 发布时间:2025-12-09 14:08:39

兼具高光电效率与机械弹性的有机太阳能电池对于可穿戴设备至关重要。本文天津大学叶龙等人引入一种广泛适用的策略,使用弹性体SEEPS,其通过精细调节与受体的相容性来实现OSCs的增韧。SEEPS诱导显著的次级弛豫以耗散应变能,使断裂应变提高超过11倍。

吴素娟&李永&刘治科AM:硫代羧酸盐介导的缺陷抑制与碘分子清除:实现22.16%高效稳定CsPbI₃钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-09 13:57:01

AP中的硫代羧酸盐基团可强螯合欠配位Pb,钝化缺陷并抑制铅泄露;其含氮部分与I形成氢键,抑制碘空位形成。本工作证明了AP作为高效界面调控剂的有效性,并为稳定高效全无机PSCs的多功能分子工程提供了新思路。高效缺陷抑制与能级优化:AP处理显著提升薄膜结晶质量、降低陷阱态密度,并优化钙钛矿/空穴传输层能级对齐,实现高达22.16%的转换效率与1.29V的高开路电压。

李晓东&方俊锋AM:ITO纳米颗粒稳定倒置钙钛矿太阳能电池中空穴传输层的自组装来源:知光谷 发布时间:2025-12-09 13:43:55

近年来,随着自组装分子的应用,倒置钙钛矿太阳能电池的效率迅速提升,但SAM分子易脱附的问题严重制约了器件稳定性。本研究华东师范大学李晓东和方俊锋等人引入功能化的氧化铟锡纳米颗粒,以促进并增强SAM在基底上的自组装。与ITO基底上传统物理吸附、易脱附的OH不同,INPs上的OH基团键合稳定,能耐受溶剂冲洗和长期老化,从而抑制器件老化过程中SAM的脱附。

无机钙钛矿太阳能电池以950小时运行达到迄今为止的最高效率来源:钙钛矿材料和器件 发布时间:2025-12-05 14:38:39

无机钙钛矿太阳能电池实现了超过21%的创纪录效率。团队成功解决了长期存在的难题,发明了一种在完全无机钙钛矿太阳能电池上制造耐用保护层的方法。解决退化问题限制钙钛矿太阳能电池采用的主要障碍是快速降解,暴露于湿度、温度或压力等波动的大气条件下,会导致钙钛矿材料在效率和材料性能上迅速下降。

离子液体提高钙钛矿太阳能电池的长期稳定性来源:钙钛矿材料和器件 发布时间:2025-12-05 14:34:30

尽管单结钙钛矿太阳能电池的光电转换效率已突破27%,其商业化进程仍受限于长期运行稳定性的瓶颈。然而,即便在隔绝水与氧等外界应力的条件下,钙钛矿太阳能电池的寿命仍显著短于硅基器件。研究组设计并开发了一系列含乙二醇醚侧链的离子液体,以协同提升钙钛矿太阳能电池的效率与稳定性。该离子液体优先富集于钙钛矿底部,可显著抑制碘化铅的聚集及空隙的形成。

高度透明的钙钛矿太阳能电池效率为18.22%来源:钙钛矿材料和器件 发布时间:2025-12-05 14:31:49

印度的一个研究团队研究了基于室温工艺制备的非晶铟锌高导电透明电极在钙钛矿太阳能电池中的应用,这些器件可用于叠层和建筑集成光伏应用。其中包括在钙钛矿太阳能电池的后部透明电极中使用a-IZO。事实上,原型机的效率超过了基于c-ITO器件的15.84%功率转换效率。

Joule:钙钛矿太阳能电池的回收利用来源:知光谷 发布时间:2025-12-05 09:52:48

钙钛矿太阳能电池实现了高效率和低成本制造,但面临着铅管理和有限使用寿命的挑战。近日,香港科技大学ZhouYuanyuan、香港浸会大学GuoMeiyu等人回顾了能够有效回收PSC的材料、设备和工艺特性。研究亮点:1)作者总结了技术经济分析和生命周期评估,这些分析和评估表明,通过多轮材料回收,成本和环境影响大幅降低,并比较了器件架构和功能层的回收途径。

郑州大学张懿强AM:双模式分子调控钙钛矿结晶,实现高效稳定的FAPbI₃太阳能电池与组件来源:知光谷 发布时间:2025-12-04 10:34:21

本研究引入二苯基碳酸酯作为双功能分子调控剂,可同时调控FAPbI薄膜的成核与生长过程。这种协同调控机制获得了均匀、大晶粒的钙钛矿薄膜,并显著降低了缺陷密度。因此,基于DPC的钙钛矿太阳能电池实现了26.61%的冠军效率,优于对照组器件。

AEM:冷升华‘准固态’添加剂助力有机太阳能电池效率超20%、寿命近500小时来源:知光谷 发布时间:2025-12-03 09:25:55

在Y系列有机太阳能电池中,调控活性层在干燥过程中的形貌对于同时实现高效率与高耐久性至关重要。这些结果确立了物理状态编程的ISR添加剂作为一条通用路径,可协同优化OSCs的效率与稳定性,并为可扩展、无残留的形貌控制提供了机理指导。同时大幅提升效率与稳定性:mDF通过优化结晶动力学、收紧π-π堆积、增大相干长度并编程有利的垂直相分离,将PM6:L8-BO器件效率提升至19.28%,并将高温光照下的运行稳定性大幅延长至477小时。