盘点:带你领略形态各异的太阳能汽车“之最”(图)

来源:发布时间:2014-06-27 15:51:59

在煤与石油等非可循环能源过度开采消费的问题逐渐暴露,更多地开发利用新能源变成了可持续发展的必经之路。而当今汽车已成为人类日常生活中的重要代步工具,却也是能源消耗的一大门类。因此低碳出行和环保的口号也成为了汽车行业的新型出路,而太阳能汽车便是其中的重要代表。相比较传统的汽油、柴油车,太阳能汽车具有明显的优势,不仅仅是零排放的干净环保,更是舒适安全的出行首选。

太阳能汽车是一种靠太阳能来驱动的汽车。相比传统热机驱动的汽车,太阳能汽车是真正的零排放。正因为其环保的特点,太阳能汽车被诸多国家所提倡,太阳能汽车产业的发展也日益蓬勃。现在越来越多的太阳能汽车被用来便利人们的出行,而许多太阳能汽车的“之最”想必却不被人熟识。太阳能汽车将会变成未来汽车行业发展的重要支援,太阳能汽车的发展故事不妨现在就回顾一下吧!

世界最小的太阳能汽车

盘点:带你领略形态各异的太阳能汽车“之最”(图)

这是一辆世界上最小太阳能汽车,无需电池,只要给它的太阳能板晒晒太阳就可以。当车顶的太阳能板受到阳光照射,自动产生能量发动引擎和轮子。也可在接近太阳能的人造光源照射下发动。车顶上那个比一块巧克力大不了多少的太阳能板,能产生足够的能源发动四个车轮。如同大部分附有太阳能片的计算器一样,由于这台汽车太小巧了,室内广源就可以驱动它。

  跑得最远的太阳能汽车

盘点:带你领略形态各异的太阳能汽车“之最”(图)


马塞洛·达卢斯19岁时就梦想着制造一辆太阳能汽车,如今,他不仅实现了这一梦想,还驾驶着太阳能汽车完成了北极圈之旅,打破太阳能汽车行驶距离的世界纪录。

世界最早的太阳能汽车

盘点:带你领略形态各异的太阳能汽车“之最”(图)

早在1978年,英国人就研制成功了世界上第一辆太阳能汽车,时速可达至13公里,后世界各国都纷纷组成了太阳能汽车研发大军,

世界最快的太阳能汽车

盘点:带你领略形态各异的太阳能汽车“之最”(图)

Sunswift IVy是由一群澳大利亚大学生成功造出的一款世界上跑得最快的太阳能汽车,这辆车的外观仿佛一架飞机,它以每小时88公里的速度改写了吉尼斯世界纪录。

我国第一辆太阳能汽车

    

盘点:带你领略形态各异的太阳能汽车“之最”(图)

我国第一辆太阳能汽车“太阳号”,长3.5米,宽1.2米,高1.1米,用玻璃纤维和铝、钢制作车身,车顶上安装有10米*2硅太阳盆镀薄膜电池 。

评点:这些形态各异的太阳能汽车都是世界太阳能汽车研发大军的佼佼者,它们在各自的领域独占鳌头,“之最”的名号可不是那么容易摘取的。太阳能汽车不仅节省能源,消除了燃料废气的污染,而且即使在高速行驶时噪音也很小。因此,太阳能汽车已引起人们的极大兴趣,并将在今后得到迅速的发展。有业内人士分析,未来太阳能汽车的发展趋势一片明朗。

索比光伏网 https://news.solarbe.com/201406/27/215372.html

责任编辑:solar_robot
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
牛津光伏硅钙钛矿叠层电池推动太阳能赛车创新来源:钙钛矿材料和器件 发布时间:2025-09-01 16:28:35

一个亮点来自密歇根大学的千禧太阳能汽车,目前在挑战者组中排名第五。Millennium采用MitoSolar使用牛津光伏公司的高性能钙钛矿叠层太阳能电池建造的定制甲板。牛津光伏公司在其公告中表示,它很高兴支持下一代工程师,因为他们展示了大胆的抱负与开创性的科学相结合的可能性,变的一切皆有可能。牛津光伏的硅基钙钛矿叠层技术有望提供比标准硅电池高20%以上的效率,目前正在迈出商业化的第一步。

突破UV衰减瓶颈!东方日升异质结技术再登国际顶刊,引领光伏可靠性革命来源:东方日升新能源 发布时间:2025-07-10 15:52:16

硅异质结太阳能电池对紫外线(UV)敏感。二次离子质谱(SIMS)分析表明,365nm 紫外线会解离 Si-H 键,导致氢原子从 a-Si:H/c-Si 界面迁移并形成亚稳态缺陷。东方日升全球光伏研究院联合东南大学,针对n型异质结电池和组件的紫外稳定性进行了深度机理性的研究,开发了低紫外损伤连续PECVD 工艺,通过优化i1钝化层氢含量达33%( a-Si0x:H)i2钝化层氢含量达25%(a-Si:H),使载流子寿命提升至3.6ms,紫外诱导衰减(UVID)从1.59%降至 0.71%。

中科院长春应化所&隆基Science双自由基自组装分子助力钙钛矿/晶硅叠层太阳能电池效率突破34.2%来源:太阳能电池札记 发布时间:2025-07-10 14:29:36

实验室小面积钙钛矿太阳能电池(PSCs)的效率虽已接近27%,但大面积器件的均匀性和长期稳定性仍是产业化的关键瓶颈。传统自组装单分子层(SAMs)材料难以同时满足高效电荷传输、高稳定性和大面积加工的需求。

香港理工大学李刚AM:20.1%! 揭示能量损失机制制备高效三元有机太阳能电池!来源:钙钛矿人 发布时间:2025-07-10 11:25:12

在有机太阳能电池中,三元策略是获得高效有机太阳能电池的主流途径,深入理解提高开路电压(VOC)的工作机理和材料选择标准是实现有机太阳能电池进一步突破的关键。

用于高效率、超稳定钙钛矿太阳能电池的局域相位调制异质结构韩国蔚山国立科学技术院&高丽大学来源:钙钛矿学习与交流 发布时间:2025-07-10 11:12:04

同时实现有效的缺陷钝化和优异的电荷提取能够最大化钙钛矿太阳能电池(PSCs)的功率转换效率(PCE)。与先前已有的基于异质结的 PSCs 不同,韩国蔚山国立科学技术院&高丽大学研究团队引入一种全新的局域相位调制异质结构,它能够对 PSCs 产生上述效果。在该结构中,我们将大量新开发的有机半导体(CY 分子)掺入整个钙钛矿晶格以及其表面和晶界。 这种局域相位调制异质结构 PSCs 实现了 26.0% 的优异 PCE(认证值为 25.28%)。多种表征证实了掺入 CY 的器件相比未掺入 CY 的参考器件

隆基绿能最新 Nature:认证34.58%!代号HTL201!不对称SAMs用于高效钙钛矿/硅叠层太阳能电池!来源:钙钛矿人 发布时间:2025-07-10 10:51:12

在纹理化硅基板上实现具有最佳封装配置的高度有序和均匀覆盖的自组装单层(SAM)仍然是进一步提高钙钛矿/硅叠层太阳能电池(TSC)效率的关键挑战。

英国研究人员为太空应用开发新型碲化镉光伏板来源:钙钛矿材料和器件 发布时间:2025-07-10 09:14:12

一个英国研究人员团队正在研究用于太空阵列的轻质碲化镉 (CdTe) 太阳能器件。其目标是开发效率为 20% 的超薄器件,为卫星和天基制造应用提供轻便、紧凑、低成本的太阳能。

20250708 广东汕头:利用农村道路建设光伏廊道无需办理建设用地审批来源:佛山新能源 发布时间:2025-07-09 17:23:58

7月2日,广东省汕头市自然资源局发布《关于激活土地要素助力“百千万工程”的通知》,要求市、县级国土空间总体规划优先保障重点产业,通过镇级国土空间总体规划、村庄规划调整村庄建设边界、公共服务和公用设施布局,优先保障农村一二三产业融合发展、乡村振兴、基础设施、科教文体卫以及具有特定选址要求的产业项目,开展规划评估优化调整用地布局。

北京理工大学李红博 AM:32.0%!纳米晶核模板策略用于具有增强均匀性和能级对准的高效钙钛矿/硅叠层太阳能电池!来源:钙钛矿人 发布时间:2025-07-09 15:43:11

文章介绍宽带隙 (WBG) 钙钛矿太阳能电池 (PSC) 对于提高串联太阳能电池的效率至关重要,但存在严重的光电压不足和卤化物偏析,大大降低了其性能和稳定性。基于此,北京理工大学李红博等人开发了一种纳米晶-核模板 (N

26.02%空穴传输材料P3CT-TBB!华东师范大学方俊锋&李晓冬用于高效倒置钙钛矿太阳能电池的厚度不敏感聚合物空穴传输层来源:钙钛矿学习与交流 发布时间:2025-07-08 09:54:19

近年来,在空穴传输层(HTLs),尤其是自组装单层(SAMs)的辅助下,倒置钙钛矿太阳能电池(PSCs)发展迅速。然而,目前器件性能强烈依赖于 HTL 厚度,其厚度需严格控制在 <5 nm,若 SAM HTL 厚度超过 10 nm,将导致效率大幅损失。在此,华东师范大学方俊锋&李晓冬报道了一种厚度不敏感的聚合物 HTL(P3CT-TBB),通过 1,3,5 - 三(溴甲基)苯(TBB)对聚 [3-(4 - 羧基丁基)噻吩](P3CT)进行 p 型掺杂制备而成。TBB 可从 P3CT 的噻吩链中夺取电

华科/海南大学李雄 NC:26.46%!交联多功能双层聚合物缓冲层用于提高钙钛矿太阳能电池的效率和稳定性!来源:钙钛矿人 发布时间:2025-07-07 10:46:34

华中科技大学/海南大学李雄等人设计了一种由聚乙烯亚胺 (PEI) 和 2-((2-甲基-3-(2-(2-甲基丁酰基)氧基)乙氧基)-3-氧代丙基)硫代)-3-(甲硫基)琥珀酸 (PDMEA) 组成的双层多功能聚合物缓冲液,插入金属电极/传输层的界面。该缓冲液通过在金属层和 PDMEA 之间形成硫醚-金属-羧基螯合环来减轻金属原子扩散。此外,它通过基于 Lewis 酸碱反应的 PDMEA 羧基和 PEI 胺基之间的原位交联来促进高效的电子传输并抑制界面复合。因此,这种设计有效地减少了器件制造和作过程中不需要