攻克全光谱太阳能挑战

来源:发布时间:2011-06-28 23:59:59
索比光伏网讯:

新型太阳能电池堆叠两个吸光层,一层捕捉太阳的可见光线,另一层采集红外线部分,来源:多伦多大学

有一篇论文发表在《自然•光子学》(Nature Photonics)上,多伦多大学(Toronto University)工程研究人员报道了一种新的太阳能电池,可铺平道路,制成廉价涂层,有效地把太阳光转换为电能。

多伦多大学的研究人员中,领导者是特德•萨金特(Ted Sargent)教授,他们报告了第一款高效串联太阳能电池(tandem solar cell),是以胶体量子点(CQD:colloidal quantum dots)为基础。他说:“多伦多大学的这款设备是堆叠两个吸光层,一层调整为捕捉太阳的可见光线,另一层设计为采集一半的太阳能,就是在红外线的部分,”主要作者王西华(Xihua Wang)博士说。

“我们需要一个突破,要架构的接口就在可见光和红外线交界处之间,”萨金特说,他是多伦多大学电气和计算机工程教授,也是加拿大纳米技术首席科学家(Canada Research Chair in Nanotechnology)。“这个小组研制出一种级联(cascade),真正的瀑布形态,就是纳米厚的材料,穿梭的电子就在可见光和红外层之间。”

博士生伽达•科磊拉特(Ghada Koleilat)说,“我们需要一个新的战略,我们称之为梯度复合层(Graded Recombination Layer),这样,我们的可见光和红外光采集器就可以有效地联接在一起,不会降低任何一层。”

这一小组开创了这种太阳能电池,它的制备就是使用胶体量子点,这种纳米材料很容易调整,可以响应特定波长的可见光和不可见光谱。因为捕捉这样范围广泛的光波,比普通太阳能电池更广泛,所以,串联胶体量子点太阳能电池(tandem CQD solar cells)原则上可以达到高达42%的效率。最好的单结太阳能电池(single-junction solar cells)局限于最高31%的效率。在现实中,太阳能电池在屋顶上和消费产品中,只有14至18%的效率。这项工作发展了多伦多大学小组世界领先的的产品,就是5.6%效率的胶体量子点太阳能电池。

“制造高效、划算的太阳能电池是一个巨大的全球性挑战。多伦多大学是非常自豪的,它是这一领域的世界级领导,”法里德•纳吉姆(Farid Najm)教授说,他是电气与计算机工程系爱德华•罗杰斯主任(Chair of The Edward S. Rogers Sr.)。

萨金特希望,在五年内,太阳能电池使用分级复合层的,就是发表在《自然•光子学》论文中的那种,将会集成到建材、移动设备和汽车零部件中。

“太阳能团体以及全世界,都需要太阳能电池具有超过10%的效率,而这极大地提高了今天光伏组件的零售价,”萨金特说。“这一进展照亮了一条实际的道路,可以设计高效太阳能电池,充分利用各种不同的光子,这些光子组成太阳的广泛调色板。”

这一出版物所依赖的部分工作,支持奖金来自阿卜杜拉国王科技大学(KAUST:King Abdullah University of Science and Technology),加拿大安大略省杰出研究项目研究基金(ontario Research Fund Research Excellence Program)以及加拿大自然科学和工程研究理事会(NSERC:Natural Sciences and Engineering Research Council)。设备来自埃工程和创新技术机构(Angstrom Engineering and Innovative Technology),使这项研究成为可能。

本文为麻省理工《科技创业》原创文章,未经书面许可,严禁转载使用。

索比光伏网 https://news.solarbe.com/201106/29/269415.html

责任编辑:solar_robot
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
AEM综述:面向全钙钛矿叠层太阳能电池的宽窄带隙钙钛矿稳定性挑战与解决方案来源:知光谷 发布时间:2025-10-09 15:59:09

钙钛矿材料因其优异的光电特性——如可调的直接带隙和长载流子扩散长度——成为叠层太阳能电池结构中理想的吸收层。在全钙钛矿叠层电池中,宽带隙与窄带隙子电池的集成能够更高效地利用太阳光谱,认证效率已高达30.1%。宽带隙钙钛矿易发生光致相分离和深能级缺陷形成,而窄带隙钙钛矿则易受Sn氧化和异步结晶缺陷的影响。因此,实现耐用的全钙钛矿叠层电池需全面理解影响宽窄带隙吸收层的降解机制。

协合运维打造内蒙古首个公共机构能源托管项目,综合能效提升40%来源:协和运维 发布时间:2025-07-11 09:36:44

位于呼市核心区的政务综合体,正经历一场脱胎换骨的绿色蜕变。 作为协合运维旗下协合新源(北京协合新源科技发展有限公司)实施的自治区首个公共机构能源托管项目,这座4.3万㎡的政务综合体通过能源系统建设、节能改造和智慧能源管理平台的部署,将实现主楼全年零碳运行。

CPIA:我国钙钛矿太阳能电池发展情况来源:钙钛矿材料和器件 发布时间:2025-07-10 15:20:25

近日,中国光伏行业协会分享了年度报告中第七篇,我国钙钛矿太阳能电池发展情况我国钙钛矿太阳能电池发展情况

温控器领导品牌宇电用"精密温控"撬动半导体产业自主可控来源:宇电科技 发布时间:2025-07-10 15:18:22

随着半导体产业加速向中国市场转移,精密温控技术的市场需求持续攀升,中国本土企业正以创新实力重塑市场格局,解决行业关键元器件“卡脖子”问题。厦门宇电自动化科技有限公司(简称“宇电温控科技”)作为国内工业温控领域的“隐形冠军”,历经35载技术沉淀,成功突破半导体级温控技术壁垒,实现了从光伏到半导体设备的全产业链国产化替代。

助力循环经济与可持续发展,隆基携手Rafiqui推动墨西哥光伏组件回收来源:隆基绿能 发布时间:2025-07-10 14:55:31

近日,隆基与墨西哥知名光伏组件回收机构Rafiqui达成合作,将携手推动墨西哥光伏组件回收产业的基础设施发展,为光伏组件的回收与再利用提供切实可行的解决方案,强化区域循环经济与光伏产业的健康可持续发展。

意大利科学家实现钙钛矿太阳能电池水下高效发电来源:恰逢小友初见 发布时间:2025-07-10 11:21:26

阳光穿透清澈水体,照射在仅0.5厘米深的实验装置中。意大利国家研究委员会物质结构研究所的科学家们记录下一组令人振奋的数据:经过特殊设计的钙钛矿太阳能电池,其在水下的功率转换效率(PCE)竟比在同等光照条件的空气中测试时高出约8%。这一发现挑战了钙钛矿材料“惧怕潮湿”的传统认知,为水下清洁能源应用开辟了新路径。

用于高效率、超稳定钙钛矿太阳能电池的局域相位调制异质结构韩国蔚山国立科学技术院&高丽大学来源:钙钛矿学习与交流 发布时间:2025-07-10 11:12:04

同时实现有效的缺陷钝化和优异的电荷提取能够最大化钙钛矿太阳能电池(PSCs)的功率转换效率(PCE)。与先前已有的基于异质结的 PSCs 不同,韩国蔚山国立科学技术院&高丽大学研究团队引入一种全新的局域相位调制异质结构,它能够对 PSCs 产生上述效果。在该结构中,我们将大量新开发的有机半导体(CY 分子)掺入整个钙钛矿晶格以及其表面和晶界。 这种局域相位调制异质结构 PSCs 实现了 26.0% 的优异 PCE(认证值为 25.28%)。多种表征证实了掺入 CY 的器件相比未掺入 CY 的参考器件

隆基绿能最新 Nature:认证34.58%!代号HTL201!不对称SAMs用于高效钙钛矿/硅叠层太阳能电池!来源:钙钛矿人 发布时间:2025-07-10 10:51:12

在纹理化硅基板上实现具有最佳封装配置的高度有序和均匀覆盖的自组装单层(SAM)仍然是进一步提高钙钛矿/硅叠层太阳能电池(TSC)效率的关键挑战。

深度 | 政策机遇与实践挑战并存 绿电直连探路前行来源:电联新媒 发布时间:2025-07-10 09:36:09

近日,国家发改委、国家能源局联合出台《关于有序推动绿电直连发展有关事项的通知》(发改能源〔2025〕650号,以下简称“650号文”)。650号文试图在电网的“主干道”供电之外,给与市场主体一个新的绿电采购选项:以用户为中心,开辟一条点对点的“专属通道”,允许新能源电站通过专用线路,直接供给特定的用电企业,使企业能够拥有一套“量身定制”的绿电供应方案。

瑞士启动"太阳能三步走"计划 2040年剑指能源独立与气候中和来源:索比光伏网 发布时间:2025-07-08 10:32:05

在欧洲能源格局加速重构的背景下,瑞士联邦政府近日宣布全面启动"太阳能自主2040"国家倡议,通过屋顶光伏全覆盖、建筑法规强制配建、财政补贴激励三大核心举措,力争在20年内实现能源供应100%自给,并同步达成碳中和目标。该项目总投资预计将超150亿瑞士法郎。

26.02%空穴传输材料P3CT-TBB!华东师范大学方俊锋&李晓冬用于高效倒置钙钛矿太阳能电池的厚度不敏感聚合物空穴传输层来源:钙钛矿学习与交流 发布时间:2025-07-08 09:54:19

近年来,在空穴传输层(HTLs),尤其是自组装单层(SAMs)的辅助下,倒置钙钛矿太阳能电池(PSCs)发展迅速。然而,目前器件性能强烈依赖于 HTL 厚度,其厚度需严格控制在 <5 nm,若 SAM HTL 厚度超过 10 nm,将导致效率大幅损失。在此,华东师范大学方俊锋&李晓冬报道了一种厚度不敏感的聚合物 HTL(P3CT-TBB),通过 1,3,5 - 三(溴甲基)苯(TBB)对聚 [3-(4 - 羧基丁基)噻吩](P3CT)进行 p 型掺杂制备而成。TBB 可从 P3CT 的噻吩链中夺取电