解决钙钛矿太阳能电池的效率和长期稳定性限制源于晶体缺陷以及界面能级错位,中国研究人员设计了双二硫化物作为钙钛矿和电子传输层界面处的多功能界面改性剂。频闪散射显微镜显示,SF处理薄膜具有优异的长期载流子动力学,在环境空气中2000小时后仍保留其初始最大载流子扩散系数的~86%,远远超过参考器件。值得注意的是,在环境储存三个月后,SF改性钙钛矿薄膜的平均载流子扩散系数比对照组高出约3倍,强调钙钛矿薄膜质量的增强。
在CsPbI₃₋ₓBrₓ基钙钛矿太阳能电池(PSCs)中,钙钛矿/空穴传输层(HTL)界面的理性分子设计是抑制非辐射复合的有效策略。然而,如何通过单一分子修饰剂同时实现高效缺陷钝化和快速电荷提取仍具挑战性。
论文概览自组装分子沉积在氧化镍表面,是反式钙钛矿太阳能电池实现高效空穴传输的关键。该工作为设计高覆盖、高稳定NiOx基HTL提供了全新思路,将反式钙钛矿电池推向更高性能与更长寿命。TCEP通过致密化SAM、降低缺陷、优化能级排布,实现高效空穴抽取与复合抑制,从而全面提升光伏性能。DFT证实该集成层吸附能更高,可抵御DMF侵蚀并阻断NiOx对钙钛矿有机阳离子的还原,抑制界面非辐射复合并优化能级匹配。
论文概览卤化物钙钛矿太阳能电池因其易受环境降解影响,实现长期稳定性仍具挑战。本研究通过将混合金属硫卤化物引入甲脒基碘化铅晶格,以增强离子结合能并缓解晶格应变,从而解决其不稳定性问题。模拟进一步证实,S与Pb、Sb共同构筑稳定的八面体框架,结构保持FAPbI原型不变。该策略首次实践三价-二价硫卤合金化,为高效、长寿命钙钛矿太阳电池提供了可规模化的组分工程路径,向可再生能源的实用化迈出关键一步。
在钙钛矿太阳能电池(PSCs)中,通过界面修饰来缓解载流子传输障碍并抑制非辐射复合,对提升电池效率和稳定性至关重要。
然而,常用的咔唑基磷酸类SAMs与透明导电氧化物及钙钛矿的结合力较弱,导致界面粘附性不足,限制了器件稳定性。本研究美国西北大学BinChen、LinX.Chen和EdwardH.Sargent等人通过设计高偶极矩的给体-π-受体型SAM分子PAFTB,增强界面静电相互作用,同时优化其功能基团的化学锚定能力。实验表明,PAFTB的界面粘附强度是传统2PACz的2.8倍,显著提升了器件热稳定性。效率与工艺优化:PAFTB器件认证效率达24.9%,填充因子提升至84%,得益于界面缺陷钝化和载流子寿命延长。
倒置(p-i-n)钙钛矿太阳能电池(PerSCs)相较于传统(n-i-p)结构,有望克服传输层的吸湿性限制。然而,其性能和稳定性常受限于疏水性空穴传输层的润湿性差及钙钛矿中的非辐射复合问题。本研究宁夏师范学院魏娟娟、阎云,北京化工大学于润楠和谭占鳌等人采用新型π共轭有机碱金属离子盐(Phen-OX)作为界面修饰材料,其兼具疏水性配体骨架和亲水性碱金属离子基团,具有两亲性。通过Phen-OX修饰阳极界面,可显著改善聚[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)表面的润湿性,并提升钙钛矿薄膜质量。此外,Phen-OX中的菲咯啉单元能与钙钛矿中未配位的Pb²⁺缺陷配位,抑制非辐射复合。同时,Phen-OX还促进钙钛矿结晶,最终实现效率达25.50%的高性能器件,并显著提升稳定性。
在这项工作中,通过SCAPS1D系统地研究了所提出的器件的结构,包括功率转换效率、HTL厚度、钙钛矿层、ETL以及温度、串联和分流电阻。所获得的器件具有1.46eV的开路电压,27.53mA/cm2的短路电流密度,填充系数为83.58%,效率为33.68%。HTL、钙钛矿吸收层和ETL的优化厚度分别为0.2、1.8和0.02微米(μm),而优化后每一层的掺杂浓度为1021/cm3。这项研究凸显了无铅钙钛矿在下一代太阳能电池中的潜力,并表明通过仔细的材料选择和优化可以获得高效率。
法国国家太阳能研究所与加拿大初创公司WattByWatt携手,共同推出了一款创新性的双端子、9cm钙钛矿-硅串联太阳能电池,该电池的电力转换效率达到了28%。目前,INES与WattByWatt正持续深化合作,共同探索串联太阳能电池的制造工艺,力求进一步提升电池性能与生产效率。值得一提的是,今年早些时候,INES与Enel的3Sun合作,已成功生产出效率为30.8%的串联钙钛矿硅太阳能电池,而四个月前,双方还宣布合作生产了效率为29.8%的设备,不断刷新着太阳能电池的效率纪录。
韩国材料科学研究所(KIMS)能源与环境材料研究部由Dong-chan Lim博士和So-yeon Kim博士领导,开发了一种即使在高湿度条件下也能保持稳定的高度耐用的柔性钙钛矿太阳能电池材料和制造工艺。这一突破使得在环境空气中生产高效太阳能电池成为可能,而无需昂贵的设备,从而有可能显着降低制造成本。