偏置电压时, 玻璃中的Na+出现离子迁移, 附着在电池片表面, 从而造成光伏组件功率下降的现象。
▼
2 p型PERC双面双玻光伏组件的PID现象分析
2.1 实际电站中的PID现象
光伏组件
, 光伏组件边框的电势为零, 高于电池片电势, 当玻璃表面有湿气、露水等时, 就会在组件表面形成一个带电的水膜, 而这个带电水膜与电池片之间会因为电势差形成一个模拟电场, 且Na+本身带正电荷, 所以在
几年,效率提升(25%)得益于对金属接触进行了全区域的钝化(passivating contacts)。 1.钝化接触电池 背景介绍 目前商业化的晶体硅太阳能电池中,前表面一般采用浅结高方阻设计
代表的离子液体中,捕获纳米尺度上锂离子电池中高定向热解石墨(HOPG)表面固态电解质界面膜(SEI)的初始成核、逐步生长及成膜的系列演化过程,并揭示了不同离子液体中SEI膜的界面性质及与电池性能相关性
电化学AFM及谱学分析表征,实现了在锂硫充放电过程中还原产物硫化锂和过硫化锂在界面形貌演变及生长/溶解过程的原位监测(图1),并提出过硫化锂在循环过程中不可逆反应产生的界面聚集是导致电极钝化及电池性能
。
保利协鑫TS+系列黑硅片,开创性地采用了正面制绒+背面抛光的独特工艺,同时具备优良的表面陷光性能和更优的背面钝化效果,效率更高而成本更低,性价比显著提升。TS+黑硅片正面采用第二代湿法黑硅制绒技术,继承了
加工成本降低40%以上,达2-3分/瓦;同时,具备更高反射率的背表面,为背钝化技术的实施提供可靠的材料基础,大大降低多晶PERC工艺的背抛光成本。
据介绍,TS+系列硅片由于性价比的显著提升,使其
共轭基团的分子进行表面电子结构调控的策略。基于钙钛矿材料的表面特性,研究人员首次采用了一类兼具共轭基团和疏水基团的噻吩衍生物进行表面修饰,实现了钙钛矿材料表面的电子结构调控,加速了载流子传输,钝化
不低于19%和21%。
此前工信部发布的2017年我国光伏产业运行情况显示,P型单晶及多晶电池技术持续改进,常规产线平均转换效率分别达到20.5%和18.8%,采用钝化发射极背面接触技术(PERC
切片技术在硅片端可显著降低成本,但金刚线切多晶硅片后,硅片表面损伤层减少,不利于使用传统酸腐蚀方案对硅片进行绒面制备,因此需解决多晶金刚线切割硅片的绒面制绒问题。
黑硅技术是解决该问题的主要路径。该
电荷聚集在电池片表面,使电池表面钝化。PID效应的危害使得电池组件的功率急剧衰减;使得电池组件的填充因子(FF)、开路电压、短路电流减少;减少太阳能电站的输出功率,减少发电量,减少太阳能发电站的
、施工、电网电压等等各种因素都有可能。本系列文章将根据实际案例一一探讨各种因素。本文主要讨论组件因素对系统的影响。
1、组件灰尘影响
对于长时间运行的光伏发电系统,面板积尘对其影响不可小觑。面板表面
测试仪。 测试结果及分析 减反膜的反射率测试,沉积4 种颜色的减反膜后,测试硅片表面的反射率,其变化与差异如图2 所示;不同颜色减反膜的表面反射率与未镀膜的表面反射率如表1 所示。 随着减反膜膜厚
流向背表面复合。 背钝化系列:三类背钝化(PERC/PERL/PERT)结构的共有特点是在传统铝背场的基础上增加了钝化层,更好地阻挡电子在背表面复合。PERL和PERT是PERC的加强版,因为在加钝化
掺杂浓度(Nd)有关,势垒越低,掺杂浓度越高,接触电阻越小。
(2)减少载流子Auger复合,提高表面钝化效果
当杂质浓度大于1017cm-3时,Auger复合是半导体中主要的复合机制,而Auger
复合速率与杂质浓度的平方成反比关系,所以SE的浅扩散可以有效减少载流子在扩散层横向流动时的Auger,提高载流子收集效率;
另外,低表面掺杂浓度意味着低表面态密度,这样也可提高钝化效果。
(3