当前位置:首页 > 光伏资讯 > 光伏技术 > 正文

浅析p型PERC双面双玻光伏组件PID现象

来源:光伏测试网发布时间:2019-07-03 09:20:21

通过在“双85”测试条件下对光伏组件分别施加±1500 V电压, 分析p型PERC双面双玻光伏组件的PID现象, 发现p型PERC双面双玻光伏组件在负偏压下更易发生PID现象, 且背面PID现象较严重。

引言

在实际发电现场及光伏组件PID测试过程中可以发现, 使用EVA (乙烯-醋酸乙烯酯) 封装的p型PERC双面双玻光伏组件, 正、背面的PID现象明显;而改变封装材料, 使用POE (聚烯烃) 封装后, 光伏组件正面的PID现象得到缓解, 但是背面仍存在PID现象。

本文主要从不同封装材料出发, 分别使用EVA和POE材料封装光伏组件, 通过PID测试, 依据测试结果分析p型PERC双面双玻光伏组件出现PID现象的原因。

1 PID的定义

PID效应 (Potential Induced Degradation) 又称电势诱导衰减, 是指当光伏组件的电极与边框之间存在较高的偏置电压时, 玻璃中的Na+出现离子迁移, 附着在电池片表面, 从而造成光伏组件功率下降的现象[1]。

2 p型PERC双面双玻光伏组件的PID现象分析

2.1 实际电站中的PID现象

光伏组件在系统中的阵列排布和偏压如图1所示。因为每块光伏组件边框都是接地的, 会造成单个组件和边框之间形成偏置电压, 所以, 越靠近负极输出端的光伏组件, 承受负偏压现象越明显。

处于负偏压情况下时, 光伏组件边框的电势为零, 高于电池片电势, 当玻璃表面有湿气、露水等时, 就会在组件表面形成一个带电的水膜, 而这个带电水膜与电池片之间会因为电势差形成一个模拟电场, 且Na+本身带正电荷, 所以在电场作用下, Na+就会通过封装材料向电池方向迁移, 从而发生PID现象[2]。在光伏电站系统中, 光伏组件越靠近负极输出端, 发生的PID现象越明显。

2.2 p型PERC双面双玻光伏组件PID (-1500 V) 测试分析

使用不同厂家的POE及EVA材料对p型PERC双面双玻光伏组件进行封装, 然后对组件施加-1500 V的电压, 进行PID 96 h测试, 结果如图2所示。

由图2可以看出:

1) 施加-1500 V电压经过PID 96 h测试后, POE封装的光伏组件正面衰减率在5%以内;而EVA封装的光伏组件正面衰减率为5.17%。

2) 同一种封装材料, 其背面衰减率明显高于正面。使用POE封装的光伏组件其背面衰减率也高达4%~7%,而使用EVA封装的光伏组件背面衰减率更是高达30%。

2.3 p型PERC双面双玻光伏组件PID (+1500 V) 测试分析

使用不同厂家的POE及EVA材料对p型PERC双面双玻光伏组件进行封装, 然后对组件施加+1500 V的电压, 进行PID 192 h测试, 结果如图3所示。

由图3可以看出, 当给组件施加+1500 V电压经过PID 192 h测试后, 无论是使用EVA封装的光伏组件, 还是使用POE封装的光伏组件, 其正、背面衰减率均在5%以内, 甚至衰减率低于负偏压96 h测试。

3 结果讨论

3.1 使用EVA封装的光伏组件在负偏压情况下, 正、背面PID现象均明显

使用EVA封装的p型PERC双面双玻光伏组件在负偏压情况下, 正、背面PID现象均较明显。导致此种情况产生的原因可能为:在高温高湿情况下, EVA易水解, 水解会产生醋酸根离子[3], Na+会结合醋酸根离子, 从而穿过EVA到达电池片表面, 影响电池片表面的电荷分布。

3.2 使用POE封装的光伏组件在负偏压情况下, 背面更易出现PID现象

使用POE封装的p型PERC双面双玻光伏组件在负偏压情况下, 背面更易出现PID现象。造成此种情况的原因可能为:由POE封装的光伏组件, 因POE结构均由C-C键和C-H键组成, 不含有C=O或其他的不饱和双键, 无酸性物质释放, 且其体积电阻率比EVA材料高约1~2个数量级, 水汽透过率比EVA低约1个数量级, 因此, 在高温高湿情况下, 玻璃析出的Na+要想迁移至电池片表面较为困难。

但是在高温高湿情况下, 封装材料的体积电阻率会减小, 且材料中的硅烷偶联剂及交联剂中含有少量的带负电的离子, 因此, 在外加电场的作用下, 可使较少的Na+通过封装材料到达电池片表面。

使用POE封装的光伏组件背面更易出现PID现象是因为双面PERC电池片正面为化学钝化, 其氮化硅中含有高密度的固定正电荷, 对Na+有一定的排斥作用, 会减弱一部分Na+的富集;但是其背面为场钝化, Al2O3/S i接触面具有较高的固定负电荷密度, 背面玻璃中析出的Na+使氧化铝内的电荷发生再分布, 导致钝化效果恶化。同时, 双面PERC电池片正面含有一层氧化硅减反射层, 可以起到抗PID效应, 而背面没有。

4 结论

本文分别使用EVA和POE材料对光伏组件进行封装, 然后分析PID现象产生的原因, 并得出以下结论:

1) 使用EVA封装的p型PERC双面双玻光伏组件易出现PID现象;

2) 即使使用POE材料封装的p型PERC双面双玻光伏组件, 其背面出现PID现象的风险也较大, 这与电池片本身的结构有关。

特别声明:
凡本网注明来源: "索比光伏网或索比咨询"的所有作品,均为本网站www.solarbe.com合法拥有版权或有权使用的作品,未经本网授权不得转载、摘编或利用其它方式使用上述作品。

经本网授权使用作品的,应在授权范围内使用,并注明来源: "索比光伏网或索比咨询"。违反上述声明者,本网将追究其相关法律责任。
推荐新闻
双面单玻TOPCon组件的可靠性和性能分析

双面单玻TOPCon组件的可靠性和性能分析

ITRPV2023预测n-TOPCon电池将于2025年后成为市场主流*,随着技术变革此趋势有望加速凸显。目前市场主流n-TOPCon组件是采用2.0mm前玻、20mm白色涂釉背玻、铝边框的双面双玻组件。

n-TOPCon双面双玻组件
2024-01-16
北上边陲冰雪王国!高效N型组件入驻国检集团漠河极寒测试园

北上边陲冰雪王国!高效N型组件入驻国检集团漠河极寒测试园

近日,由黑龙江省工业和信息化厅、大兴安岭地区行署指导,漠河市人民政府、中国国检测试控股集团主办的首届高寒高纬度地区低碳发展论坛暨极寒测试论坛于黑龙江省漠河市举办。尚德电力N型TOPCon双面双玻组件正式入驻国检集团漠河极寒测试园,开启为期一年的极寒气候户外实证。

尚德电力TOPCon双面双玻组件
2023-09-15
天合光能韩国首个光伏电站成功并网

天合光能韩国首个光伏电站成功并网

12月24日,天合光能在韩国首次投资建设的Jincheon光伏电站并网发电。Jincheon光伏电站装机容量500kW,采用天合光能高效双面双玻组件,充分考虑了当地资源条件,确保发电收益最大化。该项目年发电量约700兆瓦时,产生

天合光能双面双玻组件韩国光伏项目
2020-12-25
晶澳科技为马来首个“双面+跟踪”项目供应组件

晶澳科技为马来首个“双面+跟踪”项目供应组件

晶澳科技近日宣布,为马来西亚光伏项目供货43.8MW双面双玻组件。该项目是马来西亚第一个应用跟踪支架的双面组件光伏项目,预计建成后每年可发电7400万千瓦时。项目由HalproEngineering投资建设,是马来西亚第二轮大

晶澳科技双面双玻组件靳保芳
2020-08-03
光伏组件PID现象:行业隐痛与破解之道

光伏组件PID现象:行业隐痛与破解之道

在清洁能源领域,光伏发电以其无污染、可持续的特点受到广泛关注。然而,光伏组件在长期运行过程中会出现一种被称为PID(Potential Induced Degradation,电势诱导衰减)的现象,严重影响光伏系统的效率和寿命。

光伏发电PID
2024-04-10
气温每升高一度,光伏电站发电量会下降多少?

气温每升高一度,光伏电站发电量会下降多少?

九月已至,天气依然炎热。据中央气象台报道,9月初全国降雨进入休整期,北方大部地区昼夜温差明显拉大,南方短期内高温天气仍然持续。由于今年夏天全国持续高温,许多光伏电站业主认为这种天气利于电站发电,可以坐

光伏发电PID效应
2020-09-03
晶科能源叠焊工艺将行业焦点拉回技术本源

晶科能源叠焊工艺将行业焦点拉回技术本源

电池和组件制程技术对行业而言才是有意义,在一般情况下更先进、密度更高的工艺可以让组件获得更好的效率和性能,同时衰减、PID,抗阴影遮挡、承载、温度系数等一些物理特性也会得到改善,而这些不是单纯的硅片尺寸

电池组件PID
2020-04-21
Wood Mackenzie:全球漂浮光伏电站需求将以年均22%的速度增长

Wood Mackenzie:全球漂浮光伏电站需求将以年均22%的速度增长

根据Wood Mackenzie电力和可再生能源咨询机构的报告,从2019年到2024年,全球漂浮光伏电站需求将以年均22%的速度增长。2018年,27个国家拥有FPV电站,到2019年底将增长至35个国家。(2018-2024年漂浮电站份额占比)与

漂浮光伏电站华为PID
2019-10-10
欧洲重塑光伏产业价值链或成“南柯一梦”

欧洲重塑光伏产业价值链或成“南柯一梦”

德国光伏交易平台pvXchange公司创始人Martin Schachinger日前对欧洲重建光伏供应链面临的困难进行了解析。

光伏产品光伏组件PERC
2023-12-26
硅太阳能电池侧切面“钝化边缘技术”(PET)研究

硅太阳能电池侧切面“钝化边缘技术”(PET)研究

本文介绍了一种用于双面叠瓦PERC太阳能电池侧切面钝化的“钝化边缘技术”(PET),PET工艺首先在电池侧切面沉积氧化铝AlOx薄膜随后进行退火,制备叠瓦通常使用两种划片工艺:传统的激光刻划机械掰片(LSMC)工艺或热激光划片(TLS)工艺。这两种工艺划片后电池pFF都下降了1.2%abs。使用TLS工艺划片的电池经PET工艺处理后pFF增加了0.7%abs,而使用LSMC工艺划片的电池经PET工艺处理后pFF增加了0.3%abs。TLS与PET两种工艺相结合后电池输出功率密度达到23.5 mW/cm²,

ALD氧化铝双面PERC钝化边缘技术
2023-12-15
晶硅背接触太阳电池技术及发展

晶硅背接触太阳电池技术及发展

晶硅背接触电池技术将快速发展和普及:●成熟的PERC、TOPCon和SHJ产业化平台●激光图形化和非银(铝和铜)金属化应用●龙头企业引领作用及产业链配套全面发展

PERCTOPCon电池
2023-12-01
光伏产业中的两大技术:PERC与Topcon电池技术之比较

光伏产业中的两大技术:PERC与Topcon电池技术之比较

PERC(Passivated Emitter and Rear Cell)与Topcon(Tunnel Oxide Passivated Contact)——备受瞩目。它们之间的区别在电池性能、效率及制造工艺等方面均有所显现。本文将深入探讨光伏电池PERC和TOPcon区别。

PERCTopcon
2023-11-28
返回索比光伏网首页 回到浅析p型PERC双面双玻光伏组件PID现象上方
关闭
关闭