5400Pa及背面2400Pa的机械载荷测试,并完美匹配主流跟踪支架的安装应用。在电池片工艺方面,正泰新能源Super PERC+ 3.0电池技术通过掺镓工艺处理有效降低LeTID及LID损失,同时应用
最新的印刷优化、正面钝化、LDSE3.0、新背膜等技术,减少了遮光面积、电学损失,增强钝化效果,降低表面复合,单晶PERC双面电池量产平均正面效率达到23.22%,高效与可靠性兼具。
光伏组件质量和
(背面的高低结亦然)。 在电池新技术方面,异质结电池由于其独特的双面对称结构及非晶硅层优秀的钝化效果,具备着转换效率高、双面率高、几乎无光致衰减、温度特性良好、可使用薄硅片、可叠加钙钛矿等多种天然优势
在PERC电池上超前布局和大规模扩产。以PERC电池产能计,通威股份为全球第一,爱旭则紧随其后。 PERC电池即钝化发射极和背面电池技术,最早可追溯至上世纪80年代,通过在常规电池的背面叠加钝化层
Oxide Passivated Contact)太阳能电池技术,其电池结构为N型硅衬底电池,在电池背面制备一层超薄氧化硅,然后再沉积一层掺杂硅薄层,二者共同形成了钝化接触结构,有效降低表面复合和金
核心技术是背面钝化接触,硅片背面由一层超薄氧化硅(1~2nm)与一层磷掺杂的微晶非晶混合Si薄膜组成。钝化性能通过退火过程进行激活,Si薄膜在该退火过程中结晶性发生变化,由微晶非晶混合相转变为多晶。在
(HJT)电池片技术中全球领先的设备制造商,此前与可再生能源公司REC的合作创造出24%以上的量产光电转化效率数据,但梅耶博格在钝化发射极和背面电池(PERC)设备领域竞争力已经较弱,近年来营收规模和盈利
单晶替代多晶、P-PERC 替代常规单晶的技术迭代。其中常规单晶电池是铝背场电池,在硅片的背光面沉积一层铝膜;P-PERC 电池通过引入背钝化和开槽接触工艺,在电池背面形成背反射器,减少入射光损失
,但背面开槽处金属接触区域增加额外的复合电流;N 型电池技术路线繁多,其中 N-PERT 是 P-PERC 技术的改进型,在形成钝化层基础上进行全面的扩散,加强钝化层效果;TOPCon 在电池表面
电池技术能够帮助行业完成最后一公里的电池成本下降。对于当下已经接近平价的阶段,领跑者等项目的作用在减弱,资本方会引领新技术的发展。PERC在背面加入钝化结构,其短板是正面、所以加入热氧化和SE,目前又再
一次面临瓶颈。
航天光伏技术总监沈禛珏表示: MILKYWAY PLUS+异质结新产品电池相较于其他电池由于其独特的双面对称结构及非晶硅层优秀的钝化效果,具备着转换效率高、双面率高、几乎无光
的太阳光量,靠预测无法增加产量。因此,Q CELLS开发出"Q.ANTUM",利用减少光电转化过程里产生的损失加大发电量。Q.ANTUM技术在太阳能电池背面适用了背钝化技术(PERC,Passive
Emitter Rear Contact)。
背钝化技术就是在太阳能电池背面安装镜面结构,其并不使太阳能发电,只捕获已经穿过的光线令其反射到镜面,使通过镜面反射出来的光线重新被太阳能电池吸收,用于
相间的P+和N+扩散区,前表面制备金字塔状绒面来增强光的吸收,同时在前表面形成前表面场(FSF)。前表面多采用SiNx的叠层钝化减反膜,背面采用SiO2、AlOx、SiNx等钝化层或叠层。最后在背面
激光开槽是利用激光在硅片背面进行打孔或开槽,将部分AL2O3与SiNx薄膜层打穿露出硅基体,背电场通过薄膜上的孔或槽与硅基体实现接触。
1.3激光加工过程
1. 通过热激发或光激发产生导
实验样品
实验选取的样品采用成熟的PERC技术,每组样品激光处开槽处理之前工艺完全相同,且背面SixNy颜色相近(SixNy颜色随着厚度呈周期性变化),以保证实验样品的一致性和实验数据的准确性