通过在金属栅线与硅片接触部位及其附近进行高浓度掺杂,而在电极以外的区域进行低浓度掺杂,既降低了硅片和电极之间的接触电阻,又降低了表面的复合,提高了少子寿命,使电池具有以下3点明显的优点:
(1)降低
,SE技术目前已经成为电池片制造企业重点关注的热点技术,很多企业的电池生产都采用了该技术。
目前,晶科、隆基、晶澳、天合、爱旭等一线组件企业的电池片生产中,都采用了一定规模的该技术,总产能高达
制备发射极,磷扩散掺杂制备n+ 背场。由于n+ 磷背场代替常规p 型硅太阳电池用铝浆印刷技术形成的铝背场,背面电极也采用与正面电极相同的栅线结构,使电池前后表面都能吸收光线,实现双面发电。同时,组件
膜对电池背表面进行钝化以提高电池转换效率。普通的PERC 电池只能正面发电,PERC 双面电池是将普通PERC电池不透光的背面铝换成局部铝栅线,实现电池背面透光,同时采用2.5 mm 厚透明玻璃
更高。
目前,PERC技术成为P型电池效率继续提升的主要方法,但PERC技术应用在多晶及单晶电池片上的效率表现有所差异。单晶电池产线在导入PERC技术后,可使转换效率绝对值提升1%以上,即单晶
威尔士大学合作开发氢钝化技术,能将多晶PERC电池片光致衰减比率降为零。
2017年7月,上海尚德成功开发P型双面PERC电池和组件产品。双面PERC电池正面电池转换效率达到21.4%以上,同时背面
细的主栅,主栅线在6根以上,电池片之间使用更多更细的焊带进行互联。 图一 多主栅结构 栅线细化的原理 减小栅线面积的意义在于,一是可以减小遮光面积,从而增大短路电流;二是可以减小金属接触面
根据以上数据分析,低的扩散薄层电阻使所需的最佳细栅线间距增大,主要减少了顶层横向电流总相对功率损耗和细栅线遮光相对功率损耗,从而减少了电极引起的总的功率损耗。但是高的掺杂浓度会使电池片表面容易形成
理,电池片更低的串联电阻,更高的转换效率,有效改善隐裂造成的风险,更有利于光电流收集。十二主栅电池片,效率较常规电池提升0.2%。通过在电池正面采用十二主栅线,电池的填充因子较常规五主栅线电池明显提高,可以
高温高湿、有光照和电池片隐裂的共同作用下,EVA中的氧化剂与银栅线发生氧化反应,导致白色银栅线变成暗灰色的现象。由于蜗牛痕多数与隐裂的存在有关,因此不仅影响组件外观,而且一定程度上降低组件的可靠性能,更
有不少光伏企业公布了扩产计划。阿特斯2018年一季度报告显示。根据市场情况,阿特斯计划于2018年12月31日前将集团硅锭、硅片、电池片和组件产能分别扩大至2.0吉瓦、5.0吉瓦、7.05吉瓦和9.91
吉瓦。
瞿晓铧表示,在技术差异化的领域,阿特斯都会继续扩产。在组件领域,阿特斯有很多技改。现在一些新的组件技术,从多主栅、半片技术等都是最早引入的,也会是最早做大规模推广和扩产的。在现在的市场条件下
);单晶双玻组件(无边框设计,极佳抗PID表现)。 展宇新能 12主栅黑硅电池片 展宇新能自主研发的12主栅黑硅电池片,效率较常规电池提升0.2%。通过在电池正面采用12主栅线,电池的
。 最新推出的铂睿系列采用最新的无主栅设计,摒弃了传统的焊带串联电池结构,组件正面外观无主栅线,使得铂睿系列具有独特的外观辨识,搭配上黑色的单晶电池片,尽显高端视觉效果。 铂睿系列组件采用特殊