型PERC双面因子仅60%-80%,略低于其他技术路线,主要是因为铝栅格导电性不如银栅格,故背面栅线较宽,覆盖率高达30%-40%,但铝浆价格远低于银浆,可有效控制成本。成本增加方面,改造难度低,产线
将全铝背场改为局部铝背场,把背面铝浆全覆盖改为用铝浆在背面印刷与正面类似的细栅格,并对钝化膜中的氮化硅膜层及激光开孔部分做一些优化。设备方面,需提高背面电极栅格印刷设备及激光设备的精度。发电增益方面,P
、原材料的制备工艺、导电浆料配方及电池片的制备工艺等因素有关. 而背面用导电铝浆是PERC 太阳电池的核心材料, 铝粉作为铝浆的主要原材料之一, 其本身的性质对PERC 电池有直接影响. 不少学者
Al2O3上的SixNy保护层,破坏Al2O3的钝化效果,形成额外的导电通道,开路电压、短路电流、串联电阻与转换效率均会大幅降低,但并联电阻相对保持稳定。PERC电池的烧结既需要足够高的温度来保证铝浆与硅片充分反应,又需要将烧结温度限制在一定范围内,以保证铝浆不会烧穿Al2O3上的SixNy保护层。
。
电池背面效率略低于正面,背面透光导致正面效率略降:由于激光开孔点仍然需要栅格来疏导光生电流,故电池背面大部分区域仍覆盖了Al/Ag浆,且铝栅格导电性不如银栅格,故铝栅线较宽,背面覆盖率高达30
导电性不如银栅格,故背面栅线较宽,覆盖率高达30%-40%,但铝浆价格远低于银浆,可有效控制成本。成本增加方面,改造难度低,产线更新只需2个月左右,成本增加仅2 cent/W,与其他电池技术所需的
2.66元;累计上半年每股净损分别为5.84元和3.09元,算是太阳能族群的「重灾区」。 相较之下,太阳能导电浆厂硕禾(3691)和专攻终端系统电厂的安集(6477),则是少数「幸免于难」的业者。硕禾
化学气相沉积技术(APCVD)和 离子束辅助沉积技术制备a-Si:H也有研究。目前,HIT电池的电极目前主要采用丝网印刷低温Ag导电浆实现的,降低电极的丝网印刷电阻和细化金属线是实现太阳能电池低成本
非晶硅薄层上用溅射法沉积透明导电氧化物薄膜,最后制备金属栅极。
HIT太阳能电池的优势
低温工艺
由于使用a-Si构成PN结,所以能在200℃以下的低温完成整个工序,远低于传统晶硅太阳电池的形成
制备发射极,磷扩散掺杂制备n+ 背场。由于n+ 磷背场代替常规p 型硅太阳电池用铝浆印刷技术形成的铝背场,背面电极也采用与正面电极相同的栅线结构,使电池前后表面都能吸收光线,实现双面发电。同时,组件
依次沉积厚度为5~10 nm 的i-a-Si:H 薄膜、n 型非晶硅薄膜(n-a-Si:H)形成背表面场。在掺杂a-Si:H 薄膜的两侧,再沉积透明导电氧化物薄膜(TCO),最后通过丝网印刷技术在两侧
Al2O3的钝化效果,形成额外的导电通道,开路电压、短路电流、串联电阻与转换效率均会大幅降低,但并联电阻相对保持稳定。PERC电池的烧结既需要足够高的温度来保证铝浆与硅片充分反应,又需要将烧结温度限制
Al2O3/SiNxHy层叠薄膜进行局部开孔,使铝浆能通过孔洞与硅片形成良好的欧姆接触。本文研究工业生产中工艺参数与PERC电池转换效率之间的关系,分析工艺参数对硅片少子寿命的影响,并得出少子寿命与
开发出适合于硅衬底局域接触的太阳能电池用铝浆,使得PERC电池的阵地由实验室走向产业化。使用传统铝浆,在局域接触条件下高温烧结时,基体硅材料易溶于铝,使得铝和基体材料接触界面形成空洞而断路,增大了铝硅
要4-5微米。
金属化工艺
对于PERC电池,其金属化工艺仍可采用丝网印刷工艺,但由于PERC电池的背面结构发生改变,对导电浆料的性能提出了不同于常规电池浆料的要求。
在背面局部金属化阶段,会遇到铝
)。过高的峰值温度会导致铝浆烧穿Al2O3上的SixNy保护层,破坏Al2O3的钝化效果,形成额外的导电通道,开路电压、短路电流、串联电阻与转换效率均会大幅降低,但并联电阻相对保持稳定。PERC电池的
将硅片的有效载流子寿命由10~20s提高到100~120s,同时利用激光对Al2O3/SiNxHy层叠薄膜进行局部开孔,使铝浆能通过孔洞与硅片形成良好的欧姆接触。本文研究工业生产中工艺参数与PERC电池