诺贝尔奖获得者Moungi G. Bawendi的团队,2025年在顶级期刊《Nature Reviews Methods
Primers》上发表了一篇关于钙钛矿太阳能电池的重磅综述,介绍了从
钙钛矿(ABX3)材料的晶体组成到钙钛矿太阳能电池(Perovskite Solar
Cells,PSCs)商业化面临的挑战,涵盖配方设计、界面工程、薄膜制备和电池表征等一系列内容,文章排版清楚而且
可再生能源实验室发布的《最高太阳能电池研究效率图》。《太阳能电池效率表》(第 66 版)特别指出,此次在面积扩大过程中,电池效率的损耗极小,与以往的研究成果形成鲜明对比。这一突破性进展标志着团队成功攻克了“面积-效率”矛盾,为钙钛矿光伏技术的产业化应用提供了切实可行的解决方案。
天合光能今日宣布,其光伏科学与技术全国重点实验室自主研发的大面积钙钛矿/晶体硅叠层组件在转换效率方面取得重大突破,经德国夫琅禾费太阳能研究所(Fraunhofer
ISE)独立测试认证,面积
技术领域取得的又一重大突破,进一步巩固了公司在前沿光伏技术领域的领先地位。此次发布的叠层组件均基于210mm大尺寸叠层电池技术,在此基础上,技术团队针对钙钛矿材料的本征特性,重点开发了柔性低遮光
文章介绍前驱体质量对钙钛矿薄膜的形貌、晶粒尺寸、结晶度和陷阱态密度起着决定性作用,其的长期稳定性对于钙钛矿太阳能电池(PSCs)的可靠放大具有重要意义。基于此,武汉理工大学钟杰等人提出常用的N,N-
), Cong Chen(河工大陈聪), Meicheng Li(华北电力李美成), Jiangzhao
Chen(昆明理工陈江照) 研究内容多组分离子迁移是导致钙钛矿太阳能电池(PSCs)本征
,制备空穴传输层。最后,通过热蒸发在所得钙钛矿太阳能电池(PSCs)上沉积 100 nm 银电极。倒置器件制备首先,通过激光刻蚀技术对 ITO 衬底进行刻蚀。然后,将 ITO 衬底依次在洗涤剂溶液
高性能钙钛矿太阳能电池需要协同钝化策略来解决电子传输层(ETL)/钙钛矿界面的缺陷,这些缺陷会影响效率和长期稳定性。鉴于此,浙江大学刘鹏&高翔院士&浙江工业大学潘军&西湖大学王睿于
Chloramine Hydrochloride Molecular
Bridges”通过氯胺盐酸盐分子桥实现钙钛矿太阳能电池的协同双界面工程的研究成果,本研究引入氯胺盐酸盐(CAH)——2-氯乙胺
切实可行的道路,也为下一代高效率、低成本光伏技术的发展注入了强劲动力。随着材料稳定性和工艺的不断优化,激子裂变增强硅太阳能电池有望成为推动光伏产业迈向新高峰的关键技术。作者心得:通过这篇文章中描述的能级
硅太阳能电池因其技术成熟和高效稳定,目前在全球光伏市场中占据主导地位。然而,单结硅电池的理论效率极限(约29%)一直是制约其进一步发展的瓶颈---当光子能量高于硅的带隙时,多余的能量会以热能形式
线,100%受光,因此一直被视为效率潜力最高的技术,然而自1975年被首次提出后,因其极致的制造难度和成本一直被束之高阁,直到近几年才取得突破性进展。作为全球光伏技术领跑者,爱旭凭借自掩膜两步法叠加
这项单结晶硅时代的终极技术真正走向了商业化量产,更在能源史上树立了一座崭新的里程碑,引领人类向更高太阳能量利用效率、更可持续的未来加速进发。从多晶到单晶,从PERC到BC,爱旭始终秉承“颠覆式创新
文章介绍钙钛矿太阳能电池 (PSC) 的效率得到了显着提高,但不平衡的 δ 到 α 相结晶转变动力学和缺陷仍然是器件可重复性和稳定性的重大障碍。基于此,中科院化学所宋延林等人利用草酸胍 (GAOA
小时。这项工作为制造高效、稳定的PSCs提供了一种可行的途径,并为钙钛矿太阳能电池组件技术的结晶控制提供了新的可行性。器件制备器件制备:ITO/SAM/PVSK/PI/C60/BCP/Ag1.洗干净的
,更是对华晟在光伏技术研发与生产制造领域领先地位的高度认可。Kiwa PVEL作为全球权威的第三方光伏组件可靠性和性能测试实验室,十多年来,其产品认证计划(Product Qualification
能力,确保华晟异质结产品可实现首年衰减≤1%,30年内稳定输出功率≥90.3%的质量保证,为光伏电站的长期稳定运行提供了坚实保障。2025德国慕尼黑国际太阳能光伏展览会(Intersolar