,SJT等),通常以n型晶体硅作衬底,宽带隙的非晶硅作发射极,典型结构如上图所示。该电池具有双面对称结构,n型硅衬底两侧两层薄本征非晶硅层,正面一层P型非晶硅发射极层,背面一层n型非晶硅膜背表面场;在两侧
大面积单晶PERC和多晶PERC电池的最高转换效率分别达到22.6%和21.63%。PERC电池还有很大的效率提升空间,发射极、背面铝背场、主栅、硅片质量等还有优化空间。预计2025年,单晶PERC电池可
双面产品仅在电池的丝网印刷工序做了调整和优化,因此成本基本同PERC单面产品。相比于常规单/多晶以及PERC单晶,P型PERC双面组件可有效降低光伏电站的LCOE,以10%发电增益的双面组件为例
制备发射极,磷扩散掺杂制备n+ 背场。由于n+ 磷背场代替常规p 型硅太阳电池用铝浆印刷技术形成的铝背场,背面电极也采用与正面电极相同的栅线结构,使电池前后表面都能吸收光线,实现双面发电。同时,组件
性和大面积厚度均匀性。基于上述原子层沉积法的优点,J.Schmidt等人利用原子层沉积法制备Al2O3作为背表面钝化膜制备出效率为20.6%的PERC型太阳电池,其结构示意图如图2所示。它的缺点也同样
中心;二是场效应钝化,即通过电荷积累,在界面处形成静电场,从而降低少数载流子浓度。
文献中齐晓光等采用RF-PECVD沉积技术制备P型非晶硅薄膜材料,研究硼烷浓度和加热温度对薄膜性能的影响。通过对
就可以看出,布局双面技术已经成为光伏企业的发力点,双面技术正以燎原之势快速发展。
谁是双面技术的天选之子?
双面组件根据晶硅基底的不同可分为P型双面和N型双面,目前可量产的双面电池结构中以P型
PERC双面、N-PERT双面以及HIT为主。
材料天然优劣势对比
N型双面由于硅基底的不同,相较P型PERC双面具有一定材料上的天然优势,包括少子寿命高、无光衰、弱光性能好、温度系数良好、对金属杂质
更高。
目前,PERC技术成为P型电池效率继续提升的主要方法,但PERC技术应用在多晶及单晶电池片上的效率表现有所差异。单晶电池产线在导入PERC技术后,可使转换效率绝对值提升1%以上,即单晶
量产。
目前,晶澳单晶PERC电池量产效率提升至21.2%,60型单晶PERC量产组件的平均功率达到300W,最高功率创世界纪录达326.67W。
2)天合光能
天合光能曾是单晶PERC和多晶PERC
更低的成本带来的价格优势。据了解,PERC双面组件只需基于现有产线增加沉积背钝化层和背面激光开槽两道工序,几乎不增加额外成本。因此未来N型双面技术如何实现有效降本,将成为其提升市场竞争力、争夺市场份额
领跑者项目就可以看出,布局双面技术已经成为光伏企业的发力点,双面技术正以燎原之势快速发展。
双面组件根据晶硅基底的不同可分为P型双面和N型双面,目前可量产的双面电池结构中以P型PERC双面
,公司就具有N型单晶硅光伏电池的两种技术路线异质结和背电极。 在HIT之外,国电光伏也曾是全球较大的太阳能EPC总承包公司,具备较强的市场影响力和品牌知名度。相关资料显示,国电光伏具有的资质证书
四面体中心位置。在PECVD生长的Al2O3薄膜中,这两种形态的Al2O3同时存在。经过高温热处理过程,八面体结构会转换为四面体结构,产生间隙态氧原子,间隙态氧原子夺取p型硅中的价态电子,形成固定负电荷
了不同厚度的Al2O3薄膜,保护SixNy薄膜的厚度为100nm,折射率为2.1,正面SixNy厚度为80nm,折射率为2.0。当Al2O3镀膜时间为60s时,使用SENTECHSE800型椭偏仪测试
)和交叉指背接触(IBC)等N型技术相结合,均有机会在总的组件市场中占有相当大的份额。 市场对高性能产品的需求将持续增长。在日本、美国以及许多欧洲国家的高端市场,大多数住宅和小型商业细分市场也需要