26.0% 的优异 PCE(认证值为 25.28%)。多种表征证实了掺入 CY 的器件相比未掺入 CY
的参考器件性能更优异的关键原因。在掺入 CY 的器件中,我们还发现未封装电池(85
%)与超稳定性,为有机半导体 -
钙钛矿电池提供了新理论基础和应用范式。器件制备一、n-i-p 结构器件(FTO/TiO₂/ 钙钛矿 / Spiro-OmetaD/Au)基底清洗与预处理基底:氟
结合能(h)。图2.
基于不同HSL的叠层太阳能电池的器件性能。a、b,2T钙钛矿/c-Si叠层太阳能电池示意图(a)和201基器件的横截面SEM图像(b)。c-f,基于不同SAM和界面的~1.0
cm2钙钛矿/硅叠层的性能参数统计的方框图(每种条件下制造了20个器件,方框轮廓表示数据的标准偏差)。g,具有Me-4PACz、MeO-4PACz、HTL201的器件的J-V曲线。h、基于
一个英国研究人员团队正在研究用于太空阵列的轻质碲化镉 (CdTe) 太阳能器件。其目标是开发效率为 20%
的超薄器件,为卫星和天基制造应用提供轻便、紧凑、低成本的太阳能。MOCVD 沉积的高度
效率为20%的超薄器件,为卫星和太空制造应用提供轻便、紧凑的装载、低成本的太阳能。“我们的目标是AM0效率20% 和1.6 kW/kg的电池特定功率,”斯旺西大学太阳能研究中心、集成半导体材料
)
优取的方向和出色的光稳定性。当集成到 0.945 cm2 单片钙钛矿/硅叠层太阳能电池中时,基于 NCNT 的器件可提供 32.0% 的高效率(认证
31.7%)。这项工作强调了纳米晶体在调节
钙钛矿结晶中的关键作用,解决了 WBG 钙钛矿中长期存在的 VOC
限制,并为下一代光电器件和串联光伏建立了一个可扩展的平台。该论文近期以“Nanocrystal-Nucleus Template
;RS-1和RS-2表现出更低的衰减和更高的分子组装密度;表面结合分析:XPS、接触角等测试表明RS系列分子主要通过共价锚定而非物理堆叠,提升了结构均一性;器件级分析:导电AFM、电荷传输/复合动力学
测试显示:RS-2极大提升了空穴提取效率,降低了非辐射复合。性能表现亮眼基于RS-2的PSC小器件效率达26.3%,模块效率达23.6%(10 cm²);在封装条件下,RS-2器件于45°C连续跟踪
效率,位居无溶剂制备器件中最高的水平,同时还表现出显著提高的稳定性。令人鼓舞的是,大面积PVSC(1 cm²)实现了高达24%的优异PCE。这项研究为优化可扩展和可打印PVSC的无溶剂制备工艺提供了一种可靠的策略。
近年来,在空穴传输层(HTLs),尤其是自组装单层(SAMs)的辅助下,倒置钙钛矿太阳能电池(PSCs)发展迅速。然而,目前器件性能强烈依赖于 HTL
厚度,其厚度需严格控制在 5 nm,若
空穴提取能力的提升,器件稳定性也得到改善,在 ISOS-L-2 协议(65°C)下进行 1200 小时最大功率点(MPP)跟踪后,仍能保留约
90% 的初始效率。一、研究背景与目的倒置钙钛矿
、器件及系统的技术标准规范,形成完整的叠层光伏技术解决方案,实现高效稳定的叠层电池制备。值得注意的是,该钙钛矿/晶硅叠层太阳能电池生产线仅用于企业内部研发,不涉及新增产值。
器件取得了突破性进展。有别于传统的SAM材料在咔唑的氮原子上引入膦酸锚定基团,研究人员在咔唑核的苯环侧引入膦酸锚定基团,提出了一种具有非对称结构的自组装分子(HTL201),作为宽带隙钙钛矿子电池的空穴
团队在2.5 × 2.5
厘米的小面积器件中看到了积极成果。与传统方法相比,“该设计提供了显著的改进”,“研究项目负责人 Shiva Navazani 告诉pv
magazine。该项目的最初
提高”效率,并且不需要那么多的光活性材料,从而大大减少了器件中的铅含量。该小组在玻璃/氧化铟锡(ITO) 衬底上使用钙钛矿进行激光图案化工艺,这与放大“本质上兼容”。在这种情况下,他们使用了皮秒