%-0.8%,20年的平均衰减率为10%-20%左右。其中,单晶组件的衰减率普遍低于多晶组件,性能优势更优。
单晶的长期衰减低于多晶已经成为行业共识,但仍有人对单晶的前几个月的初始光衰抱有疑虑
,研究结果表明,单晶电池在初期2-3个月的光照情况下,光致衰减达到峰值,一般为3%左右,称为初始光衰(LID)现象,含氧量较低的单晶电池初始光衰比较低。由于单晶独特的材料性质,在继续接受光照3-4个月之后
和阴影损失是可以通过技术措施减小的,而长波非吸收损失与半导体性质有关;②电学损失.它包括半导体表面及体内的光生载流子复合、半导体和金属栅线的体电阻以及金属-半导体接触(欧姆接触)电阻损失
。 相对而言,欧姆损失在技术上比较容易降低,其中最关键的是降低光生载流子的复合,它直接影响太阳电池的开路电压。而提高电池效率的关键之一就是提高开路电压Voc。光生载流子的复合主要是由于高浓度的扩散层在前表面
光衰的主要原因,掺硼晶硅中的替位硼和间隙氧在光照下激发形成的较深能级缺陷引起载流子复合和电池性能衰退。依据文献结果,光致衰减幅度在3%左右。单晶和多晶光衰表现不一致,单晶硼氧对的生成原理如下:研究结果
显示,单晶电池在初期2-3个月的光照情况下,光致衰减达到峰值,一般为3%左右,称为初始光衰(LID)现象,硅片中的氧含量越小,单晶电池初始光衰就越低。由于单晶独特的材料性质,在继续接受光照3-4个月
光致衰减现象原理
光致衰减现象主要发生在掺硼的晶硅电池组件上,这个问题最早是由Fischer和Pschunder在1973年发现的,到2004年J.Schmidt研究结果认为硼氧对是形成光衰的
主要原因,掺硼晶硅中的替位硼和间隙氧在光照下激发形成的较深能级缺陷引起载流子复合和电池性能衰退。依据文献结果,光致衰减幅度在3%左右。
单晶和多晶光衰表现不一致
单晶硼氧对的生成原理如下
光致衰减现象原理
光致衰减现象主要发生在掺硼的晶硅电池组件上,这个问题最早是由Fischer和Pschunder在1973年发现的,到2004年J.Schmidt研究结果认为硼氧对是形成光衰的
主要原因,掺硼晶硅中的替位硼和间隙氧在光照下激发形成的较深能级缺陷引起载流子复合和电池性能衰退。依据文献结果,光致衰减幅度在3%左右。
单晶和多晶光衰表现不一致
单晶硼氧对的生成原理如下
)的方法(见图1)。通过在真空条件下对微米尺寸的6H-SiC粉末进行高温退火处理,就可在SiC颗粒表面原位生长出完全包覆SiC颗粒的高质量石墨烯(如示意图1g)。通过控制生长工艺条件,就可有效调控
SiC颗粒表面的不同区域所生长石墨烯的费米能级不同,导致SiC与石墨烯的交界处形成不同的能带弯曲(如图2所示),从而导致两种光生载流子的高效分离和转移,促进了氧化还原(降解、产氢)反应的进行。这种双极
;虽然这样的趋势对转换效率较高的单晶产品来说不啻为一大福音,然而单晶组件的价格仍高出多晶组件不少,且P型单晶产品先天上有电池封装成组件损失(Cell to Module Loss)较高、光衰(LID
)也高的劣势。若以PERC工艺生产电池,虽然转换效率大幅提升,但光衰也会从一般的2%左右飙高至3~6%。而N型单晶电池虽没有光衰的问题,但N型单晶硅片良率较低、目前价格也较无弹性;此外,生产N型单晶电池
;虽然这样的趋势对转换效率较高的单晶产品来说不啻为一大福音,然而单晶组件的价格仍高出多晶组件不少,且P型单晶产品先天上有电池封装成组件损失(Cell to Module Loss)较高、光衰(LID)也高
的劣势。若以PERC工艺生产电池,虽然转换效率大幅提升,但光衰也会从一般的2%左右飙高至3~6%。而N型单晶电池虽没有光衰的问题,但N型单晶硅片良率较低、目前价格也较无弹性;此外,生产N型单晶电池需
利润比较
为解决光衰问题,硅片厂商与电池厂商目前各有方针。硅片厂商致力于降低硼氧键结。除了减少硅片的含氧量之外、也可改变掺杂剂,例如改采全掺镓或硼镓共掺。电池端则导入退火炉工艺,目前
(CelltoModuleLoss)较高、光衰(LID)也高的劣势。若以PERC工艺生产电池,虽然转换效率大幅提升,但光衰也会从一般的2%左右飙高至3~6%。而N型单晶电池虽没有光衰的问题,但N型单晶硅片良率较低、目前价格也较无弹性
;虽然这样的趋势对转换效率较高的单晶产品来说不啻为一大福音,然而单晶组件的价格仍高出多晶组件不少,且P型单晶产品先天上有电池封装成组件损失(Cell to Module Loss)较高、光衰(LID)也高
的劣势。若以PERC工艺生产电池,虽然转换效率大幅提升,但光衰也会从一般的2%左右飙高至3~6%。而N型单晶电池虽没有光衰的问题,但N型单晶硅片良率较低、目前价格也较无弹性;此外,生产N型单晶电池需