柔性钙钛矿基单结和串联太阳能电池的功率转换效率(PCE)已分别超过25%和29%,被认为是便携式和可穿戴光电子器件(包括建筑一体化光伏应用)的理想选择。与其他薄膜技术和主流硅技术相比,钙钛矿薄膜
提升了薄膜均匀性,并降低了缺陷密度。将该材料与领挚科技薄膜晶体管(TFT)背板集成,并搭配配套读取系统,成功构建了一个感-存-算一体化、高分辨率(32×32)的实时神经形态成像阵列芯片,这也是钙钛矿光电
随着Sn含量增加而发生的结构转变结合在一起,正如在带隙和光致发光光谱中观察到的那样。由这些材料薄膜制成的光电二极管在不同光强下随时间推移表现出稳定且显著的光响应。将3D类钙钛矿与多种阳离子模板化并与
分子式为AMX3的三维(3D)钙钛矿以其优异的光电特性而闻名,但其设计受限于可用于模板化3D角共享结构的A位阳离子范围较窄,许多可行的方案已被探索。这些材料在环境条件下也面临结构不稳定性。相比之下
钙钛矿(ABX3)材料的晶体组成到钙钛矿太阳能电池(Perovskite Solar
Cells,PSCs)商业化面临的挑战,涵盖配方设计、界面工程、薄膜制备和电池表征等一系列内容,文章排版清楚而且
:原材料丰富,核心光活性层(钙钛矿)为直接带隙半导体可通过溶液法(如旋涂、刮刀涂布)或干法(如热蒸发)
在相对低温下制备,显著降低能耗和设备成本。柔性潜力:可在柔性基底(如塑料/薄膜)上制备,为可穿
文章介绍前驱体质量对钙钛矿薄膜的形貌、晶粒尺寸、结晶度和陷阱态密度起着决定性作用,其的长期稳定性对于钙钛矿太阳能电池(PSCs)的可靠放大具有重要意义。基于此,武汉理工大学钟杰等人提出常用的N,N-
中,以抑制这些副反应链,并有效减轻阳离子和碘离子(I⁻)的有害降解。Th的协同效应使其能够与未配位的Pb²⁺结合,调节结晶过程,从而实现低缺陷密度的高质量薄膜。因此,基于Th的前驱体展现出更长的存储
7Li核磁共振谱。e) 含/不含Li-TFSI的C8A溶液1H核磁共振谱。f,g) 含/不含C8A的Ag电极薄膜Ag 3d
X射线光电子能谱。h) 基于C8A与多组分离子主客体相互作用的迁移抑制
倒置器件在最大功率点连续运行1015小时后仍保持95%的初始效率。该工作为解决钙钛矿光伏及其他光电器件的本征稳定性问题提供了普适性方案。杯芳烃与功能层相互作用的理论与实验研究。a) 4TBP、C4A
簇通路快速合成高质量SnO2电子传输层(ETL),同时促进逐离子通路产生均匀的薄膜。生成的SnO2薄膜具有优异的光电特性,包括低表面复合速度(5.5 cm/s)和24.8%的高电致发光效率。这些
界面的情况。我们发现,在环境空气中退火并不会对半导体薄膜的光电性能产生不利影响;相反,经环境空气退火处理的样品会发生表面改性,通过硬
X
射线光电子能谱测量确定,这会导致能带弯曲增强。我们
2024年2月9日德国亥姆霍兹柏林能源与材料研究中心Qiong Wang等于JACS发文,详细报道了经干燥和环境空气退火处理的 CsPbI₃
薄膜的表面分析,以及它们在钙钛矿太阳能电池中后续改性
环境污染。(2) 第二代,薄膜电池技术。以铜铟镓硒 (CIGS)、碲化镉 (CdTe) 和砷化镓 (GaAs)
等材料为代表。虽然历经许多岁月,但看起来还没有硅基电池技术那样遍地都是。原因很多
,不提这些元素的品质贵贱,就薄膜电池技术效率低、成本高 (单 GW 投资 20
亿以上),无法与晶硅电池性能媲美,目前占比不足 5 %。(3) 第三代,就是本文要讨论的钙钛矿太阳电池
万元、本次发榜金额2560万元,包括大面积钙钛矿电池退火工艺设备研发、全干法制备钙钛矿薄膜关键工艺、面向消费电子应用的钙钛矿光电片解决方案及产业化。原文如下:关于合肥市2025年度第一批科技攻关“揭榜