成均馆大学(Sungkyunkwan University)、韩国化学技术研究院(KRICT)、麻省理工学院(MIT)、韩国科学技术高等研究院(KAIST)、亚洲大学和蔚山国立科学技术研究院(UNIST)的研究人员开发了一种基于二氧化锡(SnO2) 化学浴沉积 (CBD) 的过量配体策略,解决了CBD 的一些常见限制,如沉积时间延长、大面积基材上不均匀的成膜以及易氧化性等。

SnO₂的常规CBD合成通常通过两种相互竞争的成核途径进行:逐簇聚集和逐离子生长。不幸的是,逐簇途径通常占主导地位,导致异相沉积,其特征是表面覆盖不完全,并形成不利于电荷传输和复合动力学的缺陷。新方法能够通过抑制逐簇通路快速合成高质量SnO2电子传输层(ETL),同时促进逐离子通路产生均匀的薄膜。
生成的SnO2薄膜具有优异的光电特性,包括低表面复合速度(5.5 cm/s)和24.8%的高电致发光效率。这些改进导致钙钛矿太阳能电池的功率转换效率高达26.4%,钙钛矿组件的效率为23%,碳基钙钛矿电池的效率为23.1%。
在这种新方法中,抑制簇聚集路径涉及故意引入相对于常规方案过量的配体分子。这些配体与锡离子配位,稳定它们并调节成核动力学。这种分子水平的控制优先引导生长方向直接逐个离子沉积到基材上,避免了影响薄膜完整性的胶体SnO₂簇的形成。
这种富含配体的环境还提供表面缺陷的生化钝化,这些缺陷在最终薄膜中充当复合中心。通过在生长过程中使这些位点饱和,过量配体方法减轻了传统上困扰湿化学方法衍生的ETL 的中间间隙状态和陷阱。因此,电荷载流子通过ETL的传输更加顺畅,从而提高了器件的开路电压和填充因子。

这种沉积方法的快速性标志着额外的工业优势。传统的CBD技术需要更长的持续时间才能实现覆盖均匀性,这是迈向制造规模的主要瓶颈。通过改变反应途径动力学,过量配体策略可压缩处理时间,而不会牺牲薄膜质量或均匀性。合成时间的缩短直接转化为制造环境中的成本节约和更高的通量。
重要的是,本研究还解决了与氧化相关的降解问题。在传统的溶液处理SnO₂薄膜中,不受控制的氧化生长会诱导可变的化学计量和局部缺陷。受控的配体环境可缓冲化学环境,从而产生化学计量一致的相纯SnO₂层,并具有更好的化学稳定性,这是影响器件使用寿命的重要因素。
这项研究不仅弥合了实验室规模的器件制造和工业上可行的生产之间的差距,还增强了对化学浴沉积中成核动力学的基本理解。调控配体含量作为控制成核途径的杠杆,为其他氧化物半导体中类似结构的方法开辟了道路,有可能彻底改变SnO₂以外的电子传输层的制造。
其影响延伸到钙钛矿光伏的更广泛背景下,其中提高界面质量对于克服稳定性和效率瓶颈至关重要。ETL/钙钛矿界面的缺陷抑制减少了磁滞现象和光降解途径,这两个持续的挑战阻碍了钙钛矿太阳能技术的更广泛采用。通过材料合成创新来解决这些问题,该研究使行业更接近实现商业上可行的钙钛矿太阳能电池模块。
展望未来,将过剩配体CBD方法与卷对卷加工和其他可扩展的沉积技术相结合,为实现灵活、轻便、制造成本低的太阳能组件开辟了一条有前途的路线。卓越的性能指标和可扩展的制造工艺相结合,可以加速基于钙钛矿的光伏发电在大型能源项目中的部署。

总之,SnO₂化学浴沉积中的这种过量配体策略代表了为钙钛矿太阳能电池制造电子传输层的新途径。通过定制成核途径以优先考虑逐离子生长而不是簇聚集,研究人员获得了具有卓越光电属性的均匀、缺陷最小化的薄膜。这一进步转化为更高的设备效率和可扩展的生产能力,为可持续能源行业培育了新的可能性。随着光伏行业加大对优质材料和工艺的追求,这项工作可能会激发未来的创新,弥合研究突破和实际应用之间的鸿沟。
索比光伏网 https://news.solarbe.com/202506/09/390076.html

