空穴注入层中掺杂氧化石墨烯使碳电极钙钛矿太阳能电池的效率达到23.6%

来源:钙钛矿材料和器件发布时间:2025-11-07 13:54:36

在低温加工下的碳基钙钛矿太阳能电池(C-PSCs)因其增强的稳定性和经济高效性而受到关注。然而,这些优点往往被器件性能下降所抵消,主要原因是空穴传输层(HTL)与碳电极之间的电荷传输效率低。本文报道了利用羧基功能化的氧化石墨烯(GO-COOH)作为HTL材料Spiro-OMeTAD的掺杂剂,以促进界面电荷传输并固定锂离子,从而改善器件性能和稳定性。展示了GO-COOH与Spiro-OMeTAD之间的电子转移,其中GO-COOH中的离域电子无需暴露于氧气即可实现p型掺杂,从而形成强π–π共轭的HTL–碳界面。Li–C键的形成固定了可移动的锂离子,进一步提高了器件的稳定性。结果,C-PSCs实现了23.6%的光电转换效率,并在连续照射1000小时后保持了初始性能的98.7%。这些结果使C-PSCs的性能更接近采用金属电极的器件水平。

GO-COOH对Spiro-OMeTAD的p型掺杂。a,示意图显示传统的O2掺杂耗时且导致钙钛矿退化,而GO-COOH掺杂实现了快速氧化和共轭界面接触。界面处的空隙阻止空穴的传输。箭头表示空穴传输的方向。b,示意图说明通过GO-COOH掺杂实现的锂固定。

有机–无机杂化钙钛矿太阳能电池(PSCs)在过去十年中其光电转换效率(PCE)经历了显著提升,从3.8%上升至27.0%。然而,其进一步发展受到长期稳定性不足的制约,主要原因是长期暴露于环境因素(如阳光、热、水和氧气)引起的降解,以及离子迁移导致的金属电极腐蚀。传统方法如封装可以减轻水和氧的损伤,但无法阻止离子迁移和金属电极腐蚀,从而对稳定性造成显著威胁。为克服这些挑战,基于碳的PSCs(C-PSCs)通过低温工艺制备成为研究重点,因为其具有化学稳定性、优异的电学性能且成本低廉。然而,与金属电极相比,碳电极在性能上往往较差,这是由于钙钛矿–碳电极界面发生非选择性电荷转移所致。

低温加工C-PSC的光伏性能和耐久性。a, C-PSC结构示意图。b,c, 基于对照组和GO-COOH掺杂HTL的C-PSC的J–V特性图(b)以及最佳性能GO-COOH掺杂C-PSC的正向和反向扫描特性(c)。(消息来源: Nature Energy https://doi.org/10.1038/s41560-025-01893-8)

为了解决这一问题,研究重点集中在将空穴传输层(HTL)引入碳基钙钛矿太阳能电池(C-PSCs)中,以增强电荷提取能力并防止电子泄漏,其中,Spiro-OMeTAD被报道可促进高光电转换效率(PCE)。然而,这类C-PSCs的成功应用通常需要掺杂双氟磺酰亚胺锂(LiTFSI)以提高导电性,其易吸湿特性可能会增加水分进入钙钛矿层,并且锂离子的迁移可能促使其扩散到相邻层,从而影响电池稳定性。此外,传统依赖氧气的掺杂方法费时且重复性差。此外,Spiro-OMeTAD与碳电极之间的接触不良限制了界面电荷转移,导致器件性能下降。因此,为了实现C-PSCs的优异性能和稳定性,关键在于开发一种有效策略,在不暴露于氧气的情况下同时掺杂Spiro-OMeTAD、促进界面电荷向碳电极的转移并固定锂离子。

在这项工作中,科学家引入了一种在低温加工C-PSCs中使用富含羧基的氧化石墨烯(GO-COOH)对Spiro-OMeTAD进行有效p型掺杂的方法,以通过促进价电子转移实现充分掺杂而无需氧气活化。该过程涉及通过插层GO-COOH迅速消耗并固定锂离子,从而在应力条件下增强器件稳定性,通过X射线光电子能谱(XPS)和飞行时间二次离子质谱(ToF-SIMS)得到验证。此外,GO-COOH中电荷的离域化改善了掺杂HTL的导电性和能带匹配,并与碳电极建立了强π–π共轭界面,从而提升C-PSCs中的电荷传输动力学。通过采用精心设计的双层碳电极(石墨烯–高导电碳膜)以增强双向电荷提取与收集,C-PSCs实现了23.6%的最高PCE以及超过该结构Shockley–Queisser(S–Q)极限80%的开路电压–填充因子(VOC–FF)乘积。通过GO-COOH掺杂实现了增强的稳定性,未封装器件在持续光照超过1000小时后仍保持98.7%的初始性能。这一突破解决了低温加工C-PSCs中HTL界面电荷转移差的关键问题,为提高效率和实现优秀稳定性奠定了基础。

此项工作为实现 Spiro-OMeTAD的无氧快速氧化及构建理想 HTL 接口以提升低温制备 C-PSCs 的效率和稳定性提供了新见解。


索比光伏网 https://news.solarbe.com/202511/07/50012098.html
责任编辑:wanqin
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
东方电气首个千瓦级钙钛矿/晶硅两端叠层光伏户外实证示范电站投运来源:钙钛矿工厂 发布时间:2025-12-25 09:47:45

近日,东方电气集团所属东方光能、东长研究院联合攻关打造的5千瓦钙钛矿-晶硅两端叠层光伏户外实证示范电站在甘肃酒泉正式投运,标志着我国新一代高效光伏技术从实验室研发阶段向户外规模化实证示范实现关键突破。针对钙钛矿材料的高温敏感性,团队采用了适配叠层电池的低温串焊与封装技术,有效降低热应力对钙钛矿层的损伤,成功研制出2384毫米×1303毫米钙钛矿-晶硅两端叠层光伏组件,实现从研发向工程示范的跨越。

AFM:硫族钙钛矿 LaScS₃-石墨烯复合薄膜实现 p 型透明导电材料来源:知光谷 发布时间:2025-12-24 09:22:19

然而,缺陷阻碍了LSS薄膜实现有效的导电性。本工作不仅为基于溶液法制备硫族钙钛矿薄膜提供了可扩展的路径,也为开发用于透明电子器件的p型透明导电材料提出了新策略。

Sang Il Seok最新AEL:协同偶极工程释放宽禁带钙钛矿中92.8% S-Q 电压极限,用于叠层光伏来源:知光谷 发布时间:2025-12-24 09:20:57

最终,最优WBGPSC实现了VOC=1.29V、JSC=20.0mAcm、FF=82.8%和PCE=21.27%,对应Shockley–Queisser电压极限的92.8%。这些结果表明,协同缺陷钝化与能级调控对于释放WBG钙钛矿的完整电压潜力均至关重要。研究亮点:突破性电压表现:通过协同表面处理,宽禁带钙钛矿电池开路电压达1.29V,实现Shockley–Queisser理论极限的92.8%,为同类器件中最高之一。高效叠层集成:经处理的宽禁带钙钛矿作为顶电池,与硅底电池组成叠层器件,实现26.8%的光电转换效率与1.91V的高开路电压,展示其在实际叠层光伏中的应用潜力。

中山大学毕冬勤AM:邻苯二酚锚定基团助力锡-铅钙钛矿全钙钛矿叠层效率突破28.3%来源:知光谷 发布时间:2025-12-24 09:19:15

本研究中山大学毕冬勤等人首次设计并引入一种新型SAM分子——9--9H-咔唑,其具有共轭邻苯二酚锚定基团,应用于锡-铅钙钛矿电池中。此外,DOPhCz加速空穴提取并减少器件工作过程中的化学扰动。应用于全钙钛矿叠层电池时,效率达到28.30%。高效稳定全钙钛矿叠层电池:基于DOPhCz的Sn-Pb子电池效率达24.17%,全钙钛矿叠层效率达28.30%;在最大功率点连续运行500小时后仍保持80%初始效率,界面与运行稳定性显著优于2PACz体系。

钧达股份:正积极推进钙钛矿及钙钛矿叠层电池的商业化应用来源:证券时报e公司 发布时间:2025-12-23 16:36:15

钧达股份12月22日在机构线上电话会议表示,公司深耕光伏电池技术研发,在下一代钙钛矿技术领域布局深远,已与仁烁、中科院、苏州大学等单位开展研究,已实现关键突破:钙钛矿叠层电池实验室效率达32.08%,居于行业领先水平;2025年11月完成首片产业化N型+钙钛矿叠层电池下线,攻克底电池结构优化、高效介质钝化膜沉积等核心技术,具备独立开展叠层工艺研发与小规模生产的能力,正积极推进钙钛矿及钙钛矿叠层电池的商业化应用。

苏大袁建宇团队AM: 倒置钙钛矿太阳能电池实现 26.11% 的冠军效率!来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:15:02

效率:DCA-1F共SAMs器件表现最优,冠军PCE26.11%,开路电压1.179V,短路电流密度25.89mA/cm,填充因子85.49%;DCA-0F、DCA-2F共SAMs器件PCE分别为25.21%、25.05%,均高于纯MeO-2PACz对照组。稳定性:30-50%湿度环境下储存1000小时,DCA-1F共SAMs器件保持90%初始PCE;1太阳光照下最大功率点跟踪1000小时,仍维持~90%效率,而纯MeO-2PACz器件500小时后效率衰减超50%。DCA分子与MeO-2PACz在溶液状态下自聚集行为的示意图。近期报道的基于共自组装单分子层策略的高效钙钛矿太阳能电池性能汇总。

目前最高值!AFM:双重钝化策略使钙钛矿电池太阳能-氢能转换效率达6.5%来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:13:06

FASCN促进钙钛矿晶粒长大,PDAI减少表面缺陷,共同抑制非辐射复合并提升电荷提取效率。进一步通过三元富勒烯混合物优化电子传输层,改善能级对齐并降低界面能量损失,使小面积器件的开路电压从1.41V提升至1.60V,能量转换效率达9.4%。该系统太阳能-氢能转换效率达6.5%,是目前报道的单吸收体PV-EC系统中最高值。单吸收体水分解效率创纪录:将优化后的1.0cm器件集成于PV-EC系统,实现6.5%的太阳能-氢能转换效率,为目前单吸收体光解水系统最高值。

27.2%!中科院游经碧团队Science:HVCD策略制备高效率钙钛矿太阳能电池来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:11:11

近期,中国科学院半导体研究所游经碧研究员领导的团队发现,基于MACl制备的钙钛矿薄膜存在垂直方向上氯分布不均匀的问题,主要原因是MACl中的氯离子在钙钛矿结晶过程中迅速迁移至上表面引起富集。基于所开发的氯元素均匀分布的钙钛矿薄膜,团队研制出经多家权威机构认证、光电转换效率为27.2%的钙钛矿太阳能电池原型器件。该研究实现了钙钛矿太阳能电池效率与稳定性方面的协同提升,将为其产业化发展提供重要支撑。

世界纪录!京东方钙钛矿小电池稳态27.37%!2.88㎡全面积效率20.11%!来源: 发布时间:2025-12-23 14:08:42

在钙钛矿光伏领域,京东方依托自身在玻璃基薄膜加工工艺及封装技术方面的独特优势,快速实现钙钛矿核心能力储备。经国际权威机构福建计量院认证,京东方小电池钙钛矿器件稳态效率最高达27.37%,刷新世界纪录;经TV南德权威认证,中试线2.88㎡刚性钙钛矿组件功率达579W,全面积效率20.11%,单结大面积器件效率行业第一;柔性效率也均创世界纪录,实验线柔性效率21.39%,中试线柔性效率16.6%,功率433w,是业内面积最大、功率最大的柔性组件。

浙江大学王勇 AEL: 离子位点竞争策略用于增强钙硅叠层光伏器件中宽带隙钙钛矿的稳定性来源:先进光伏 发布时间:2025-12-23 11:00:37

论文概览宽带隙钙钛矿的稳定性是实现高效钙钛矿/硅叠层光伏器件的关键,但由于宽带隙钙钛矿中卤化物偏析导致的不稳定性仍然是一个重大挑战。结论展望本研究创新性地提出了一种离子位点竞争策略,通过精心设计的多Cl-源前驱体组分优化,实现了Cl离子在钙钛矿晶格与间隙位点的可控分布。

南京工业大学曹久朋&秦天石AEL:调节宽带隙钙钛矿结晶并抑制相位分离制备高性能钙硅叠层器件来源:先进光伏 发布时间:2025-12-23 10:58:16

论文概览宽带隙钙钛矿太阳电池是叠层光伏器件的关键组成部分。然而宽带隙钙钛矿中较高的溴离子含量容易导致复杂的结晶过程和薄膜质量的降低。光稳定性测试中PA改性器件在1000小时连续光照老化后保持90.1%初始效率,远超对照组,证明2D钙钛矿通过结晶调控与相分离抑制实现钙硅叠层器件光电转换效率和长期稳定性的协同突破。这项工作为制备高质量宽带隙钙钛矿以及高性能钙硅叠层太阳能电池提供了重要的材料设计以及工艺路线指导。