挑战30%,钙钛矿的下一个十年

来源:光伏测试网发布时间:2019-12-27 11:35:27
 2009年,日本科学家Tsutomu Miyasaka率先将钙钛矿材料用于染料敏化太阳能电池作为吸光材料,采用CH3NH3PbI3敏化TiO2阳光极和液态I3-/I-电解质获得了3.8%的光电转化效率。而后,科学家们对钙钛矿材料和结构进行改善,短短10年内,钙钛矿太阳电池的光电转换效率获得飞速提升,已达到25.2%,2019年,钙钛矿电池也即将要走向商业化生产。

25.2%的转换效率记录已通过NREL认证,高于CIGS(转换效率=23.4%)、CdTe(转换效率=22.1%)、甚至多晶硅(转换效率=22.8%)。

图.钙钛矿电池的过去、现在和未来。

未来10年钙钛矿电池发展面临的重大挑战是什么?除致力于达到理论效率极限外,需要将小面积钙钛矿电池积累的技术经验转移到大面积组件和叠层结构器件的商业化生产中,也需要保证钙钛矿电池的长期稳定性。除此,未来可能会发展可回收的钙钛矿电池材料。因此,预测将在以下方面进行研究:

实现转换效率的理论极限值。根据相关参数分析,开路电压(VOC)和填充因子(FF)实验数据与理论值之间存在一定程度的差距。据报道,VOC和FF与非辐射复合有关,包括Shockley-Read-Hall复合和界面复合。因此,需要对界面和晶界进行研究,以便更好地理解复合的起源。人们提出了不同的界面工程技术,但观察到的数据仍显示与理论上值VOC(1.33V)和FF(0.91)存在差异。目前需要寻求一个通用有效的方法在单结钙钛矿电池上获得超过30%的转换效率。

大面积涂层溶液的研究。大面积涂层旋涂过程中的向心力允许在涂层溶液中使用高沸点极性非质子溶剂形成钙钛矿薄膜。然而,用于旋涂方法的极性非质子溶剂溶液仅适用于超过10×10 cm的大面积涂层,这意味着需要为没有向心力的大面积涂层开发新的涂层溶液。

长期稳定性的研究。虽然最近的报告包括稳定性测试结果,但根据国际电工委员会(IEC)提供的光伏测试标准,钙钛矿光伏电池还需要更加准确的测试结果。因此,最好研究钙钛矿电池在1000小时光照和85°C相对湿度、湿热1000小时的稳定性。对于长期稳定的钙钛矿电池,良好的封装可能是最好的方法,材料科学和界面工程是提高对光照、水分和温度的稳定性的先决条件。2D/3D复合钙钛矿相比3D钙钛矿显示出更好的稳定性,界面工程表现出更好的稳定性和更优的性能。

回收技术。为避免铅浪费,回收技术是十分重要的。可以对废弃的钙钛矿太阳能组件进行化学处理以溶解钙钛矿,需要开发有效的收集铅的方法,特别是收集铅I2、导电衬底和金属电极,实现完全可循环利用。

基于钙钛矿的串联技术。叠层结构被认为是钙钛矿电池进入光伏市场的有效途径之一。钙钛矿电池可以用作顶部单元,较窄的带隙Si或CIGS放置在底部。需要对最佳带隙进行设计,以达到效率的最大化;此外,还应进行光电管理方面的研究,以改善最终叠层结构中的光伏参数;就叠层电池结构而言,钙钛矿顶部电池的正向或反向结构取决于半导体Si的类型。例如,使用p型Si底部电池和在Si底部电池顶部的倒置钙钛矿结构报告了超过25%的转换效率;除了双结之外,三结也可能得到更高的转换效率。模拟结果预测,底部具有1.1 eV Si,中部具有1.44 eV钙钛矿,顶部具有1.95 eV钙钛矿的三结单元可产生约39%的效率。

日前,纤纳光电钙钛矿组件获得全球首次IEC稳定性测试报告,协鑫纳米实用化钙钛矿组件在1241.16平方厘米的有效面积上达到了15.31%的效率,钙钛矿电池商业化已经指日可待,作为最具潜力的电池技术,下一个十年,有足够的理由相信,钙钛矿也将在工业化中实现高效率生产。届时,光伏行业将迎来一场新的变革。

索比光伏网 https://news.solarbe.com/201912/27/318578.html

责任编辑:hanzhe
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
Joule:用可印刷碳阴极增强p-i-n型钙钛矿太阳能电池的可行性:极性反转的起源来源:知光谷 发布时间:2025-12-09 14:10:16

可印刷的后电极是钙钛矿太阳能电池规模化应用的关键技术。碳电极在n-i-p结构中已广泛应用,但其在p-i-n结构中的应用因界面能量失配而受限。

吴素娟&李永&刘治科AM:硫代羧酸盐介导的缺陷抑制与碘分子清除:实现22.16%高效稳定CsPbI₃钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-09 13:57:01

AP中的硫代羧酸盐基团可强螯合欠配位Pb,钝化缺陷并抑制铅泄露;其含氮部分与I形成氢键,抑制碘空位形成。本工作证明了AP作为高效界面调控剂的有效性,并为稳定高效全无机PSCs的多功能分子工程提供了新思路。高效缺陷抑制与能级优化:AP处理显著提升薄膜结晶质量、降低陷阱态密度,并优化钙钛矿/空穴传输层能级对齐,实现高达22.16%的转换效率与1.29V的高开路电压。

剑桥大学Adv.Sci.:利用原位扫描透射电镜可视化钙钛矿量子点的应变耦合低温相变与缺陷动力学来源:知光谷 发布时间:2025-12-09 13:54:55

室温亚埃级成像揭示了量子点中卤化铅钙钛矿晶格固有的原子特征与八面体倾斜,表明其在受热扰动前已处于预倾斜的低对称性状态。这些发现揭示了钙钛矿量子点本征的结构柔性,并为优化量子点在各类光电器件中的稳定性与效率提供了一种可扩展的后合成处理方法。

李晓东&方俊锋AM:ITO纳米颗粒稳定倒置钙钛矿太阳能电池中空穴传输层的自组装来源:知光谷 发布时间:2025-12-09 13:43:55

近年来,随着自组装分子的应用,倒置钙钛矿太阳能电池的效率迅速提升,但SAM分子易脱附的问题严重制约了器件稳定性。本研究华东师范大学李晓东和方俊锋等人引入功能化的氧化铟锡纳米颗粒,以促进并增强SAM在基底上的自组装。与ITO基底上传统物理吸附、易脱附的OH不同,INPs上的OH基团键合稳定,能耐受溶剂冲洗和长期老化,从而抑制器件老化过程中SAM的脱附。

钙钛矿电池可申报!关于开展第15批 《上海市创新产品推荐目录》编制申报工作的通知来源:钙钛矿工厂 发布时间:2025-12-08 09:45:21

在“双碳”战略引领下,我国光伏技术创新再迎里程碑进展。近日,南京大学谭海仁教授课题组联合仁烁光能产业化团队,在清洁能源关键核心技术研发中取得重大突破。其研制的平米级商业化钙钛矿光伏组件,不仅实现了绿色环保制备,更在转换效率与产品可靠性方面双双达到世界领先水平。

无机钙钛矿太阳能电池以950小时运行达到迄今为止的最高效率来源:钙钛矿材料和器件 发布时间:2025-12-05 14:38:39

无机钙钛矿太阳能电池实现了超过21%的创纪录效率。团队成功解决了长期存在的难题,发明了一种在完全无机钙钛矿太阳能电池上制造耐用保护层的方法。解决退化问题限制钙钛矿太阳能电池采用的主要障碍是快速降解,暴露于湿度、温度或压力等波动的大气条件下,会导致钙钛矿材料在效率和材料性能上迅速下降。

科学家研发自修复封装材料,阻铅超99%!为钙钛矿光伏技术的可靠性提供了关键解决方案来源:钙钛矿材料和器件 发布时间:2025-12-05 14:36:42

钙钛矿太阳能电池凭借其高光电转换效率与低制造成本,正成为下一代光伏技术商业化进程中的领跑者。因此,亟需开发一种能够快速响应损伤、具备高效自修复能力与主动铅捕获功能的新型封装材料,这已成为推动钙钛矿光伏技术实现安全、可持续商业化所必须突破的关键瓶颈。

离子液体提高钙钛矿太阳能电池的长期稳定性来源:钙钛矿材料和器件 发布时间:2025-12-05 14:34:30

尽管单结钙钛矿太阳能电池的光电转换效率已突破27%,其商业化进程仍受限于长期运行稳定性的瓶颈。然而,即便在隔绝水与氧等外界应力的条件下,钙钛矿太阳能电池的寿命仍显著短于硅基器件。研究组设计并开发了一系列含乙二醇醚侧链的离子液体,以协同提升钙钛矿太阳能电池的效率与稳定性。该离子液体优先富集于钙钛矿底部,可显著抑制碘化铅的聚集及空隙的形成。

高度透明的钙钛矿太阳能电池效率为18.22%来源:钙钛矿材料和器件 发布时间:2025-12-05 14:31:49

印度的一个研究团队研究了基于室温工艺制备的非晶铟锌高导电透明电极在钙钛矿太阳能电池中的应用,这些器件可用于叠层和建筑集成光伏应用。其中包括在钙钛矿太阳能电池的后部透明电极中使用a-IZO。事实上,原型机的效率超过了基于c-ITO器件的15.84%功率转换效率。

弗劳恩霍夫ISE基于行业标准底TOPCon电池实现与钙钛矿叠层30.6%的效率来源:钙钛矿材料和器件 发布时间:2025-12-05 14:17:45

弗劳恩霍夫ISE的研究人员开发了一种采用TOPCon底电池、标准纹理前表面的钙钛矿-硅串联太阳能电池。他们的结果表明,TOPCon底部电池在分流电阻率方面可与串联器件中的异质结电池相当,支持可扩展且具成本效益的工业生产。“证明TOPCon2电池设计及其精益工艺流与钙钛矿/硅叠层集成兼容,标志着实现工业叠层太阳能电池生产的成本效益高峰。”弗劳恩霍夫ISE的其他研究人员最近首次将所谓的掩膜板前金属化方法应用于叠层太阳能电池的开发。

Joule:钙钛矿太阳能电池的回收利用来源:知光谷 发布时间:2025-12-05 09:52:48

钙钛矿太阳能电池实现了高效率和低成本制造,但面临着铅管理和有限使用寿命的挑战。近日,香港科技大学ZhouYuanyuan、香港浸会大学GuoMeiyu等人回顾了能够有效回收PSC的材料、设备和工艺特性。研究亮点:1)作者总结了技术经济分析和生命周期评估,这些分析和评估表明,通过多轮材料回收,成本和环境影响大幅降低,并比较了器件架构和功能层的回收途径。