太阳能用铝型材的生产工艺与技术

来源:一分日元发布时间:2019-03-28 14:32:05

导读: 太阳能电池板框架及其支撑结构的支柱、拉杆、支承腿等,是铝合金材料应用的新市场,并已全球推行应用。下面简要介绍太阳能光伏铝型材制造过程生产工艺技术与关键节点,以供参考。

1.前言

太阳能是一种新型的取之不尽的无污染绿色能源,是我国确定重点发展的七大新兴产业之一,其电池板框架及其支撑结构的支柱、拉杆、支承腿等,都可以用目前最经济耐用的铝合金材料挤压制造,是铝合金材料应用的新市场,并已全球推行应用。下面简要介绍太阳能光伏铝型材制造过程生产工艺技术与关键节点,以供参考。

2.优化铝型材挤压模具设计与制造

挤压模具是保证太阳能光伏铝型材产品形状、尺寸精度的重要工具。挤压模具的设计与制造品质是实现挤压生产优质、高产、低耗、高效、低成本的重要保证。因此要生产制造出高精密光伏铝合金型材,必需优化挤压模具设计与制造。

2.1采用先进挤压模具制造设备

高精度先进的挤压模具加工设备是保证金属挤压模具合格的前提条件。因此生产光伏铝合金型材应采用先进的模具加工设备,如CNC、慢走丝线切割、三轴加工中心、电火花加工中心等来提高模具的加工精度和性能。

2.2合理布置模孔

为了保证光伏铝型材良好的对称性,提高生产效率和成品率,模孔的布置必须遵守中心对称原则,采用多模孔对称布置。设计模具过程,尽量将桥位设计在型材的非装饰面上,以避免缺陷外露。

2.3优化挤压模具设计工作带

工作带是稳定制品尺寸和保证制品表面质量的部分。设计模具工作带长度时,要尽量减少落差,在长度变化上要平缓,并采用阻碍角和促流角来降低金属流速,达到金属流动均匀和改善型材表面质量的目的。

3.化学成分控制

采用6063铝合金材料进行生产,其化学成分控制如表1所示。

实践表明,采用6063铝合金已成为生产高精密光伏铝合金型材的重要选择。6063铝合金属Al-Mg-Si系可热处理强化铝合金,合金强化相为Mg2Si,有良好的挤压性能和低的淬火敏感性,高温塑性好,淬火温度范围宽,临界淬火速度小。在国家标准GB/T3190中规定的6063铝合金成分范围内,对化学成分的取值不同,会得到不同的材质特性,当化学成分的范围很大时,其性能差异会在较大范围内波动,以致型材的综合性能会难于控制。为了保证光伏铝合金型材的精密度,必

须严格按照企业控制标准确定合金的化学成分。

4.熔炼、铸造和铸锭均匀化的工艺

4.1熔炼、精炼工艺

用旋转式蓄热熔炼炉熔炼,熔炼温度720-760℃。在720℃以上温度时采用高纯氮气吹入精炼剂精炼15min,精炼剂用量为熔体重量的0.08%,精炼后电磁搅拌15min,铝液静置20-30min。取样检验严格控制铝合金溶液的化学成分,使材料达到所要求的力学性能。

4.2铸造工艺

采用半连续直接水冷铸造方法。直接水冷方法的冷却强度大,冷却速度快,使铸造组织细化,增加组织的致密度,进而提高铸锭的力学性能和热处理效果。控制铸造温度710-730℃,铸造速度50-70mm/min,冷却水压0.1-0.3MPa。为了减少热裂纹倾向,改善合金的化学组成,采用在线添加铝钛硼丝,添加速度为1700-2000mm/min。

4.3铸棒组织的均匀化处理

为了减少和消除铸锭的晶内偏析,改善其化学成分和组织结构的不均匀性,对铝合金铸棒进行均匀化处理。控制的技术条件是将铸棒加热到540-550℃,保温8-10h,出炉强风冷却和水雾冷却。均匀化退火后宜加快冷却,以保证阳极氧化着色后色泽的均匀性。

5.挤压和时效工序的工艺技术条件控制

6063铝合金型材的挤压、在线淬火和时效的工艺技术条件,采取控制铸棒加热温度:440-480℃;模具加热温度:450-480℃,模具加热时间小于5h;挤压筒加热温度460-500℃;挤压速度:12-18m/min;出料口温度510-550℃;冷却方式为在线风冷或水雾冷却;挤压型材在线淬火后进行时效处理:控制温度为200±5℃,保温时间:3h。6063铝合金的固溶处理与挤压过程相结合,可以避免晶粒长大,提高型材产品的物理机械性能。



索比光伏网 https://news.solarbe.com/201903/28/304444.html
责任编辑:yangran
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
2025光伏创新图鉴 谁将主导新技术来源:索比光伏网 发布时间:2025-12-26 15:52:19

2025年,在技术创新的浪潮中,光伏电池组件企业聚焦TOPCon、BC、HJT等核心技术路线,持续刷新效率纪录、推进产业化落地,同时在组件技术与系统集成领域斩获颇丰,形成了多元化的创新格局。

光伏破内卷的三条路径:技术迭代、扶优扶强与红线约束来源:投稿 发布时间:2025-12-24 15:26:07

光伏,苦“内卷”久矣!在此背景下,设置刚性的转化效率门槛、通过政策引导行业“扶优扶强”已成为破局关键。“整合重构,扶优扶强”也成为2025光伏行业年度大会“破卷”当下的一致认同。面对成本与质量的博弈,行业应坚守技术驱动的长期发展理念,“扶优扶强”支持优质企业和优势产品,抵制低质低价竞争,摒弃“唯价格论”的采购导向,推动产业竞争从根本上转向高附加值、高性能的良性轨道。

从“跟跑”到“领跑”:华晟新能源董事长徐晓华畅谈能源强国战略下的“二次出海”与技术创新自主权来源:华晟新能源 发布时间:2025-12-23 14:35:22

在中央广播电视总台近日举办的“报时中国经济”新能源专场活动上,华晟新能源科技股份有限公司董事长徐晓华受邀出席“新能源·新场景·新机遇”高端对话环节,与中国新能源产业领军人物同台论道。构建开放创新生态,从“技术领先”到“体系自主”为实现异质结技术的产业化突破与持续引领,华晟新能源采取了独特的开放式创新战略。这种“责任引领”的理念,正是华晟新能源开放创新平台、推动标准全球化的深层动因。

固态钙钛矿太阳能电池的发现与进展来源:钙钛矿材料和器件 发布时间:2025-12-22 13:39:11

2012年,我们首次报道了长期稳定的固态钙钛矿太阳能电池,开辟了一个新领域,并引发了认证功率转换效率超过27.3%,超越了单晶硅太阳能电池的效率。如今,随着钙钛矿/硅叠层器件效率接近35%,钙钛矿太阳能电池已成为满足2050年净零碳排放目标所需太瓦级需求的主要候选者。展望未来,钙钛矿太阳能电池已准备好进入市场,预计钙钛矿/硅叠层器件将首先出现,随后是高效单结器件。固态钙钛矿太阳能电池的发现钙钛矿是具有ABX3通式的化合物。

西湖大学王睿AM:无MA钙钛矿结晶与可扩展刮涂钝化实现高操作稳定性的钙钛矿太阳能模块来源:知光谷 发布时间:2025-12-22 08:52:19

钙钛矿太阳能模块要实现商业化,不仅需要高功率转换效率,还必须具备长期的操作稳定性。本研究西湖大学王睿等人通过三管齐下的策略解决了这些挑战。本研究为在工业相关条件下实现高操作稳定性的钙钛矿太阳能模块建立了机制框架。

光伏破内卷:价值重构下的技术深耕与生态协同来源:索比光伏网 发布时间:2025-12-19 08:45:59

中润光能国内业务负责人杨海峰出席圆桌对话环节,并在对话结束后与索比光伏网深入交流,为专业化制造企业的生存发展提供了样本,更折射出光伏产业价值重构的必然路径。面对“规范提升产品质量”的问题,杨海峰指出,质量与成本的辩证关系是破解内卷的关键认知突破。交流中,杨海峰特别提到,内卷困局的本质,是价值与价格的严重倒挂。

钟宝申:光伏“反内卷”,本质是技术与质量的竞赛来源:隆基绿能 发布时间:2025-12-19 08:43:49

“破卷”成为2025光伏行业年度大会的最强关键词。12月18日,在西安举行的“2025光伏行业年度大会·专家领袖对话”环节中,隆基绿能董事长、总经理钟宝申指出,光伏产业的自律需要与标准引领、扶优扶强以及技术创新这三个方向的措施相结合,才能达到更好的效果。

Nat Commun:有机太阳能电池突破20%效率!稠环异构化调控非卤化有机太阳能电池的分子堆积与器件性能来源:知光谷 发布时间:2025-12-17 11:19:27

分子骨架几何结构的微小变化影响有机太阳能电池中的分子间相互作用与性能。本文香港理工大学罗正辉等人研究了三种异构小分子受体,以揭示不同稠环构型如何调控分子堆积、电子耦合和薄膜形成。原位光学测量显示,NaO1在成膜过程中促进快速且连续的结构演化,形成平滑的形貌和均匀的相分布。我们的研究结果凸显了稠环异构化如何决定有机太阳能电池中结构-堆积-性能之间的关系。

瑞士联邦材料科学与技术实验室Fu Fan NC:25.4%!柔性全钙钛矿叠层太阳电池!PEDOT:PSS垂直相分离优化!来源:钙钛矿人 发布时间:2025-12-16 16:39:52

柔性全钙钛矿叠层太阳能电池(TSC)有望为便携和航空航天应用提供轻量化电源,但其性能仍受限于窄带隙(NBG)子电池中的界面损耗,尤其是源自聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)的损失。

AEL:氧化铈掺入提升钙钛矿太阳能电池的辐射耐受性与稳定性来源:知光谷 发布时间:2025-12-16 09:38:07

卤化物钙钛矿太阳能电池因其高效率与缺陷耐受性结构而具有成为下一代光伏技术的巨大潜力。光谱与电学分析表明,该处理抑制了非辐射复合,保持了晶界电势,并提升了光热稳定性。这些结果表明,CeO的掺入为增强钙钛矿太阳能电池在同时面临环境与辐射暴露时的耐久性提供了一种有效策略,为其在陆地与航空航天能源技术中的可靠应用铺平了道路。

AFM:通过掺杂与缺陷工程实现GaOₓ的双极性载流子传输,用于高效硅异质结太阳能电池来源:知光谷 发布时间:2025-12-15 18:24:32

钝化接触是实现高效晶体硅(c‑Si)太阳能电池全部潜力的关键赋能技术。过渡金属氧化物(TMOs)因其宽带隙、可调的功函数(WF)和有效的表面钝化能力,作为钝化接触层受到广泛关注。氧化镓(GaOₓ)具有超宽带隙(≈4.8 eV)、高电子迁移率以及因其丰富的固定电荷而具有优异的场效应钝化能力,但其在钝化接触中的应用尚未被探索。