基于LabVIEW的光伏组件温度对其发电量计算影响的研究

来源:太阳能杂志发布时间:2018-07-30 14:16:26

来源:太阳能杂志 作者:杨婧 孟斌

在光伏组件发电量的计算公式中,由于组件温度的不易获得,采用常用电站选址的环境温度代替组件实际工作温度计算发电量的方法,但误差极大。本文针对这个问题,以理论推导为基础,以LabVIEW 开发测试实验为平台,分别从理论推导和测试实验两方面研究组件温度对精确计算光伏组件发电量的影响。通过理论推导,提出了组件温度计算模型,对传统经验公式进行修正;通过测试实验,模型的计算数据与实验数据能够较好的吻合,推导出的计算模型可用于指导工程实践,从而为太阳能光伏组件发电量的精确计算提供理论依据。

1 模型的建立

在某一时刻,当太阳辐照度、空气温度和风速等外界条件相对稳定时,光伏组件的平均温度也稳定在某一数值。此时,光伏组件与外界处于一种热平衡状态,即光伏组件热输入Qin 与光伏组件热损耗Qout 相等,可表示为:


式中,Qin 的主要热量来源是入射至光伏组件表面,但未通过光电效应转换成电能的能量。Qout 的热量输出形式主要有:光伏组件对天空和大地的热辐射、与空气的对流换热、光伏组件内部的传导散热。其中,传导换热对组件热平衡的影响较小,根据傅里叶定律,导热过程中,单位时间内通过单位截面积所传导的热量,正比于当地垂直于截面方向上的温度变化率[2],即:


式中,Φ 为导热量;A 为截面面积;.t/.x 为物体沿x 方向的温度变化率。由于光伏组件与空气之间的热量交换方式主要是对流换热,空气的导热系数很小,因此通过传导散热的换热量影响也很小。本文主要是研究风速对光伏组件温度的影响。因此,下文作如下假设,以方便对特定情况下光伏组件温度变化进行研究:1) 太阳辐照度在某一时间内保持不变;2) 空气和地表温度在某一时间内保持恒定,且低于光伏组件温度。当外界风速发生变化时,比如以一定风速掠过光伏组件表面,热平衡被打破,但经历一段时间后,光伏组件又会重新达到另一个热平衡。此时,由能量守恒定律可知:


式中,Q′in、Q′out 分别为另一个热平衡下的光伏组件热输入及光伏组件热损耗。入射至光伏组件的主要热量与太阳辐照度有关,当某一时刻风速改变,但太阳辐照度基本不变,入射至光伏组件的主要热量也不变。则有:


由于Qout 主要包括光伏组件对天空和大地的热辐射Qf,以及与空气的对流换热Qd,则:


式中,Q′f 为另一个热平衡下光伏组件对天空和大地的热辐射;Q′d 为另一个热平衡下空气的对流换热。其中:


式中,λ 为热系数,W/(m.K);l 为长度,m;v 为运动粘度,m2/s;pr 为普朗特数;u 为风速,m/s。


式中,ε1 为光伏组件对天空和大地的发射率;ε2 为天空和大地对光伏组件的发射率;C0为辐射常量,取5.67 W/(m2•K4);X12 为角系数。


式中,t′r 为当风速大于1 m/s 时光伏组件的表面温度;u′ 为大于1 m/s 时的风速。


将式 (9)~式 (12) 代入式(6)。考虑到相对于对流换热量,辐射散射量是个小值,为了简化计算,在这里略去。简化后即有:


2 光伏组件温度测试

首先根据需要测量的物理量,选择合适的传感器和变送器,然后利用LabVIEW软件平台进行编程[3],并根据软件的系统要求选择对应的数据采集卡和数据连接线,搭建完整的基于LabVIEW 的测试系统平台。

数据采集过程为:1) 利用各传感器进行电流、电压、温度、风速和太阳辐照度等物理信号采集[4];2) 通过对应的变送器将所测试的电量或非电量信号转化成与被测物理量有确定数学关系的电量信号,数据采集卡再将所测电量信号转换为计算机能处理的数字信号,测试系统程序调用信号处理函数对所采集的数字信号进行处理,然后进入框图程序将数字信号还原成所测量的物理量并显示于虚拟仪器前面板;3) 将数据以Excel 表格或其他数据库方式储存于电脑中,自此完成测试数据的测量、采集、处理、显示、储存的完整过程[5]。测试系统如图1 所示。



3 测试数据分析

随着太阳辐照度的不断增加,光伏组件温度、环境温度与风速的关系如图2 所示。在无风风力极小的状态下,光伏组件的温度随太阳辐照度的增加而增加;但随着风速的逐渐加大,光伏组件表面对流换热效率提升,光伏组件温度急剧下降,在30 min 内,风速从1 m/s 升高到8 m/s,光伏组件温度从31 ℃降低到16 ℃,温差达到15 ℃。此时,环境温度波动很小,一直保持在9 ℃左右。但即使在风速达到8 m/s、光伏组件温度降低到16 ℃时,光伏组件温度仍然高于环境温度。


3.1 传统经验公式估算

图3 是传统经验估算值与实测值的对比分析。从图中可看出,经验计算值与实测值误差较大,尤其是风速增大时,光伏组件的温度显著下降,而传统经验公式计算的光伏组件温度却仍然是随着太阳辐照度的增加而增加,显然未考虑风速对光伏组件温度的影响。在实际工作环境中,风速是个变量,尤其是在太阳能资源良好的内蒙古地区。因此,在估算光伏组件工作温度时,风速的影响不容忽视。


根据传统经验公式(1),在风速1 m/s 条件下,其可确定在给定太阳辐照度及环境温度下的光伏组件温度。若风速大于1 m/s 时,此公式已不再适用。因此,在风速增大的情况下,要考虑对流换热对光伏组件温度的影响。

3.2 传统经验公式修正

公式(14) 为风速大于1 m/s 时光伏组件表面温度的计算公式。将式(1) 代入式(14),此时u取1 m/s,修正后的光伏组件温度可表示为:


利用修正后的经验公式估算的光伏组件温度数据与实测数据进行对比,如图4 所示。结果显示,误差很小,基本吻合。由此说明,在工程实践中,可以利用式(16) 估算光伏组件温度,以此相对精确计算光伏组件发电量。


4 发电量估算实例

本文采用某地3、6、9、12 月的太阳能实测数据,对容量为1 MW 的光伏发电系统分别采用传统经验公式估算的组件温度以及修正后的公式估算的组件温度进行了发电量估算。发电量Es的计算公式可表示为:


式中,Es 为发电量,kWh;n 为光伏组件数量;p 为每块光伏组件的峰瓦功率;T 为月平均气温;HT 为倾斜面上的太阳辐射量;ξ1 为污蚀系数,取0.97;ξ2 为非MPPT 点系数,取0.96;ξ3 为防反二极管系数,取0.98。根据以上公式所得结果见表1。


5 结论

根据上文计算结果可以看出,采用不同温度所估算出来的发电量存在着较大的差异。采用修正后公式的组件温度估算的发电量要比采用环境温度估算的发电量低18061.6 kWh,相对误差为3.5%;比采用传统经验公式的组件温度估算的发电量要高10724.1 kWh,相对误差为2.1%。

通过以上的计算和分析可知,对于工程实际当中的光伏发电量计算有必要通过一种有效的温度估算方式来确定光伏组件的温度,提高工程计算精度,从而更好地实现工程利用的价值。

内蒙古恒瑞新能源有限责任公司 ■ 杨婧* 孟斌

来源《太阳能》杂志社2018 年 第 3 期( 总第287 期)


索比光伏网 https://news.solarbe.com/201807/30/291503.html
责任编辑:suna
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
美国:前三季度美国进口光伏组件24GW,同比大幅下降来源:光伏情报处 发布时间:2025-12-29 17:07:15

根据美国海关进口数据统计,2025 年1-9 月美国累计进口光伏组件(HS Code 854143)24.4GW, 较2024年同期的48GW下降49%。

直流侧184MW!爱旭ABC中标中国电建渔光互补项目来源:爱旭股份 发布时间:2025-12-29 11:00:04

日前,中国电建铜山区刘集镇120MW、姜堰45MW(直流侧共计184MW)渔光互补光伏组件采购项目中标结果公示,浙江爱旭成功中标,再次彰显了爱旭ABC组件在集中式电站场景的强劲竞争力。

光伏2026:国之重器的应有气象与当下定位偏差来源:索比光伏网 发布时间:2025-12-26 16:31:08

大行业的应有气象与定位偏差光伏已初步成长为一个“大行业”,但却缺少大行业的自觉。大行业自有大行业的气象,搅动风云,影响民生,关乎国家安全稳定,甚至足以开启一场战争。除了最高层,无论是我们行业自身,还是其他相关部门,绝大多数人都对光伏的定位有很大偏差。

2025光伏创新图鉴 谁将主导新技术来源:索比光伏网 发布时间:2025-12-26 15:52:19

2025年,在技术创新的浪潮中,光伏电池组件企业聚焦TOPCon、BC、HJT等核心技术路线,持续刷新效率纪录、推进产业化落地,同时在组件技术与系统集成领域斩获颇丰,形成了多元化的创新格局。

《关于促进光热发电规模化发展的若干意见》解读之三︱光热发电规模化发展的“布局”与“破局”来源:国家能源局 发布时间:2025-12-26 14:51:02

光热发电规模化发展的“布局”与“破局”──《关于促进光热发电规模化发展的若干意见》解读光热发电集热电转换和常规交流同步发电机于一身,具有大规模、低成本和高安全储热系统功能,以及宽负荷调节范围和快速变负荷能力,是实现新能源安全可靠替代传统能源的有效手段,也是加快构建新型电力系统的有效支撑。《若干意见》提出,到2030年,光热发电的总装机力争达到1500万千瓦左右。

爱旭荣登伍德麦肯兹Grade A光伏组件厂商名单来源:爱旭股份 发布时间:2025-12-26 09:57:36

近日,伍德麦肯兹(Wood Mackenzie)发布2025年上半年"全球光伏组件制造商排名"最新报告。爱旭凭借在可靠性、创新性的卓越表现和全球光伏市场的影响力成功入选 “Grade A”光伏组件厂商名单,再次证明爱旭在全球光伏行业的领先地位。

【索比辅材价格指数】光伏粒子价格下降,光伏玻璃部分成交重心松动来源:索比咨询 发布时间:2025-12-26 09:44:56

更多价格信息/报告分析,扫码进入小程序注册登录免费查看本周EVA粒子价格下降,降幅3.8%。下周EVA市场贸易商阶段性空单补仓,及下游企业刚需补货,提振需求。多空交织之下,预计下周EVA价格或僵持整理。价格上涨,下游需求维持偏弱,市场交易冷淡。本周支架热卷价格上涨,涨幅0.3%。随着库存持续增加,加之下游用户压价心理明显,部分成交重心松动。但目前生产已无利可图,部分略有亏损,因此预计波动幅度较为有限。

8.5GW电池组件!Emmvee Energy逆势扩产来源:PV光圈见闻 发布时间:2025-12-25 14:38:22

日前,光伏制造商Emmvee Photovoltaic Power宣布公司最新组件厂投产。该公司通过其子公司Emmvee Energy实施这一计划,组件工厂位于KarnatakaBengaluru附近Sulibele Hoskote Taluk,规模为2.5GW。

协鑫集成跻身Wood Mackenzie A级光伏组件制造商来源:协鑫集成 发布时间:2025-12-25 13:58:17

近日,全球知名能源研究与咨询机构伍德麦肯兹(Wood Mackenzie)正式发布2025年上半年《全球光伏组件制造商综合实力排名》报告。协鑫集成凭借其在技术研发、制造水平、财务稳健性及长期可靠性等多维度的卓越表现,成功获评为全球A级光伏组件制造商。在行业面临深刻挑战的背景下,这一权威认证不仅标志着协鑫集成的综合实力获得国际顶尖标准认可,更凸显了其在全球光伏产业新一轮结构性调整中的领先地位与卓越韧性。

TCL Solar 实力稳居全球光伏第一梯队,连续获评彭博 BNEF Tier 1来源:TCL中环 发布时间:2025-12-25 10:21:02

近日,彭博新能源财经公布最新全球光伏组件制造商Tier 1名单,TCL中环旗下TCL Solar凭借其一贯的卓越表现,继续稳居这一全球顶级行列。这不仅是一张“季度成绩单”,更是对TCL Solar长期稳健运营与深层市场信任的权威背书。

《关于促进光热发电规模化发展的若干意见》解读之一︱加快构筑新型电力系统重要支撑 开启我国光热发电规模化发展新征程来源:国家能源局 发布时间:2025-12-25 09:32:22

加快构筑新型电力系统重要支撑开启我国光热发电规模化发展新征程──《关于促进光热发电规模化发展的若干意见》解读为贯彻落实党的二十届四中全会提出的加快经济社会发展全面绿色转型,建设美丽中国要求,我国正加快构建新型电力系统,积极稳妥推进和实现碳达峰、碳中和。为推动光热发电产业化、规模化发展,国家发展改革委、国家能源局印发《关于促进光热发电规模化发展的若干意见》。