少量金属添加是制备廉价且持久钙钛矿太阳能电池的关键

来源:新材料在线发布时间:2016-03-01 11:50:22

索比光伏网讯:世界上正在寻找更好更便宜的替代能源,钙钛矿太阳能电池是未来的希望。在太阳能-电能转换效率方面,它们比任何太阳能技术提升地更快。低成本且容易制造,可以像新闻报纸一样卷对卷打印,甚至可放在传统硅太阳能电池上面来提升效率。但总所周知,它们是容易损坏的:水分、空气、热量,甚至长时间的阳光照射会使它们损坏。

目前,这些材料得到提升。在过去的几个月里,三个研究团队分别报道将少量铯添加到钙钛矿结构时,能够制备出更加稳定且高效的太阳能电池。还预判了铯加入的钙钛矿电池能够在屋顶使用几年或几十年。如此的话,“这确实是一项突破,”瑞士联邦技术研究所领导研究小组的化学家Michael Graetzel说。

钙钛矿正迅速克服其他缺点。六年前,日本研究人员制备了首个钙钛矿基太阳能电池,只能将3.8%的太阳能转化为电能,效率远低于硅和其他商业技术(Science,15 November2013,p.794)。但在上个月,在这里召开了材料研究协会会议,韩国的研究人员们报道了证据表明他们最新的硅电池超过硅,效率达到创纪录的21.7%。研究者们越来越希望钙钛矿太阳能电池会很快地接近30%效率,目前主要应用的只有昂贵的砷化镓电池。“这些材料可能也会达到砷化镓电池的效率,”英国牛津大学的物理学家Henry Snaith说。

然而与砷化镓不同,钙钛矿结构由低成本的组分构成,通常包括无机元素铅和碘,还有一两种简单的有机化合物,甲基铵(MA)或formainium(FA)以层状分布。所需制备的化学物质不需要昂贵的高温装置或者其他太阳能电池材料需要的清洁环境。“对于钙钛矿结构电池,这些是相当重要的,”北卡罗莱纳杜克大学物理学家David Mitzi说。

钙钛矿结构电池还特别善于吸收光子。因此,电池可以做得非常薄,进一步降低成本。更薄的电池也会更加有效,当光激发的电子转移到电极时,不会阻塞在晶格缺陷处。

但“如果电池不稳定,高效率是无意义的,,”牛津大学的物理学家Giles Eperon说。所以世界各地的研究人员正在探索更稳定的钙钛矿结构。他们用铅、锡、锑、铋以及元素周期表附近的其他金属元素替换铅。他们还用溴和氯取代碘。但大多数这些改变降低材料了的效率。

但用更大的有机分子FA取代MA,会显著地提高效率。比如,2015年6月12日出版的《Science》杂志中,韩国大田市化学技术研究所化学家Sang Il Seok和他的同事报道FA-碘化铅钙钛矿太阳能电池实现了超过20%的效率。单一的FA电池或FA和MA的组合电池似乎也比纯MA-碘化铅更稳定。当把MA电池从防护箱拿出时会立即退化,从黑色变成黄色,该变化显示它们正在吸收可见光的更窄波段。FA-MA混合电池也会退化,但速度更慢:几分钟内,而不是几秒,Snaith说。

目前,一些研究小组发现,铯元素的添加似乎能够进一步稳定其他组分,并有助于保持钙钛矿结构和黑色的表面。韩国成均馆大学化学工程师Nam-Gyu Park率先描述了这个方法。发表在2015年10月21日《Advanced Energy Materials》期刊的一篇论文中,他和同事们表示用铯替换10%MA所构成的太阳能电池能够“显著”提高抗湿度和光照的能力,虽然他们没有给出具体的数字。

这些电池的最高效率为16.5%,低于最好的纯MA电池,但相关研究仍在继续。在发表于2015年12月3日的《Energy&Environmental Science》期刊的一篇论文中,Graetzel和他的同事报道了混合MA、FA和铯的钙钛矿电池效率超过21%,另一独立实验室验证了这个结果。显然,在电池稳定和高效性方面,铯是一个关键因素。“我相信该领域会继续进步,”Graetzel说。

包含铯的钙钛矿也可与硅电池配合工作,正如Snaith和他的同事在本周《Science》杂志上报道的。这种组合通常在硅层覆盖钙钛矿电池。因为材料具有不同的能带隙,能够吸收不同波长的光,能带隙是从原子上释放电子需要吸收的额外能量。能带隙为1.1电子伏(eV)的硅擅长吸收可见光谱中的红端光子。典型的MA基钙钛矿具有1.5eV能带隙,能够吸收波长更短或更蓝的光子。这两种材料的结合能够比单独材料获得更宽的光谱和更多的能量。为了使这种重叠电池性能更好,研究人员想要通过提高钙钛矿的带隙扩大这个范围,使它们吸收更蓝的光。

Snaith领导的团队和其他研究团队已能够用溴替代部分或全部的碘。但这些改变让电池在光和热下更不稳定。目前的研究中,Snaith的团队用铯替代17%的FA。形成的溴基钙钛矿电池能够承受更长时间的光照和高温。这种电池具有17%的效率,具有能与硅配合的更宽能带隙。研究人员通过把这种材料放在19%效率的硅光电池上计算得出。他们能够创造25%效率的叠加电池。Snaith说,硅钙钛矿叠加电池的效率最终应该能够超过30%。迄今为止,类似的值已能够接近砷化镓电池,砷化镓设备如此昂贵,只能用在航天领域,他们愿意追求更高的效率。

如果铯掺杂的高效钙钛矿能够被大众接受,更美好的明天就在前方。

原标题:少量金属添加是制备廉价且持久钙钛矿太阳能电池的关键


索比光伏网 https://news.solarbe.com/201603/01/173466.html
责任编辑:solar_robot
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
苏大袁建宇团队AM: 倒置钙钛矿太阳能电池实现 26.11% 的冠军效率!来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:15:02

效率:DCA-1F共SAMs器件表现最优,冠军PCE26.11%,开路电压1.179V,短路电流密度25.89mA/cm,填充因子85.49%;DCA-0F、DCA-2F共SAMs器件PCE分别为25.21%、25.05%,均高于纯MeO-2PACz对照组。稳定性:30-50%湿度环境下储存1000小时,DCA-1F共SAMs器件保持90%初始PCE;1太阳光照下最大功率点跟踪1000小时,仍维持~90%效率,而纯MeO-2PACz器件500小时后效率衰减超50%。DCA分子与MeO-2PACz在溶液状态下自聚集行为的示意图。近期报道的基于共自组装单分子层策略的高效钙钛矿太阳能电池性能汇总。

27.2%!中科院游经碧团队Science:HVCD策略制备高效率钙钛矿太阳能电池来源:钙钛矿与OPV薄膜太阳能 发布时间:2025-12-23 14:11:11

近期,中国科学院半导体研究所游经碧研究员领导的团队发现,基于MACl制备的钙钛矿薄膜存在垂直方向上氯分布不均匀的问题,主要原因是MACl中的氯离子在钙钛矿结晶过程中迅速迁移至上表面引起富集。基于所开发的氯元素均匀分布的钙钛矿薄膜,团队研制出经多家权威机构认证、光电转换效率为27.2%的钙钛矿太阳能电池原型器件。该研究实现了钙钛矿太阳能电池效率与稳定性方面的协同提升,将为其产业化发展提供重要支撑。

黄劲松AEM:理解钙钛矿太阳能电池中基于膦酸分子的空穴传输层来源:知光谷 发布时间:2025-12-23 09:59:38

自组装单分子层已成为钙钛矿太阳能电池中一类重要的界面材料,能够调控能级、提升电荷提取效率,并改善器件效率与稳定性。其中,基于膦酸的自组装单分子层因其可与透明导电氧化物形成共价键,作为超薄、透明且可调控的空穴传输层而备受关注。解决这些挑战是将SAMs推向商业化钙钛矿太阳能产品的关键。

紫色光/紫外光线诱导的卤化物钙钛矿太阳能电池钝化失效来源:钙钛矿材料和器件 发布时间:2025-12-22 13:50:34

胺基末端配体,无论是直接使用还是以二维钙钛矿的形式使用,都是钙钛矿钙化剂中的主要缺陷钝化剂,并且显著推动了各种钙钛矿太阳能电池达到最高效率。然而,即便是这些最先进的钙钛矿太阳能电池,在运行过程中仍会迅速降解,这引发了对钝化耐久性的担忧。总之,研究结果揭示了一种普遍机制,即紫色光/紫外光线会导致胺基端配体的去钝化,而这类配体是钙钛矿太阳能电池的主要缺陷钝化剂。

固态钙钛矿太阳能电池的发现与进展来源:钙钛矿材料和器件 发布时间:2025-12-22 13:39:11

2012年,我们首次报道了长期稳定的固态钙钛矿太阳能电池,开辟了一个新领域,并引发了认证功率转换效率超过27.3%,超越了单晶硅太阳能电池的效率。如今,随着钙钛矿/硅叠层器件效率接近35%,钙钛矿太阳能电池已成为满足2050年净零碳排放目标所需太瓦级需求的主要候选者。展望未来,钙钛矿太阳能电池已准备好进入市场,预计钙钛矿/硅叠层器件将首先出现,随后是高效单结器件。固态钙钛矿太阳能电池的发现钙钛矿是具有ABX3通式的化合物。

SusMat综述:环保锡基钙钛矿太阳能电池的开压和填充因子损失来源:钙钛矿太阳能电池之基石搭建 发布时间:2025-12-22 09:36:56

基于锡的卤化物钙钛矿太阳能电池是一种极具前景的无铅替代方案,具有适宜的带隙和强光吸收特性,但其器件性能受制于显著的开路电压和填充因子损失。尽管相关研究已取得一定进展,但由于氧化化学、缺陷物理及界面能学的耦合作用,锡基钙钛矿太阳能电池的开路电压与填充因子性能仍难以媲美铅基钙钛矿太阳能电池。

肖娟定&蒋晓庆&逄淑平Angew:揭示分子柔韧性在增强吡啶基缺陷钝化以实现高效稳定钙钛矿太阳能电池中的作用来源:知光谷 发布时间:2025-12-22 09:33:25

通过对钙钛矿/C界面进行分子调控以减少缺陷密度,对实现高效稳定的倒置型钙钛矿太阳能电池至关重要。然而,取代基柔韧性对钝化性能的影响仍未得到充分理解。研究发现,柔性中心取代基显著增强了吡啶基团的电子云密度,从而提升了其钝化能力,同时抑制了分子聚集并促进了更好的界面接触。

苏州大学袁建宇AFM:均匀接触的共自组装单层膜实现效率超过26%的倒置钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-22 08:50:50

咔唑基自组装单层膜作为倒置钙钛矿太阳能电池中的空穴传输层被广泛使用,但它们在溶液中易形成胶束,导致界面均匀性下降。本文苏州大学袁建宇等人设计并成功合成了一系列氟化共轭SAMs,开发出一种用于高性能倒置PSCs的共SAM体系。基于DCA-0F、DCA-1F和DCA-2F共SAMs制备的倒置PSCs分别实现了25.21%、26.11%和25.05%的冠军光电转换效率。共SAM策略实现高效稳定器件:DCA-1F与MeO-2PACz共混形成均匀单层,使倒置PSCs效率提升至26.11%,并在MPP跟踪1000小时后保持约90%初始效率。

ACS Nano:通过分级消除表面碘空位实现高效稳定的FA₀.₉₅Cs₀.₀₅PbI₃单晶钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-22 08:48:18

通过在亚稳区进行连续溶质补给的晶体生长,有效清除了微米级深度的碘空位;随后采用有机铵后处理进一步消除最表层残留空位。这种协同策略显著优化了载流子传输并抑制了非辐射复合,从而将单晶钙钛矿太阳能电池的效率从22.8%提升至25.5%。效率与稳定性同步大幅提升:单晶钙钛矿太阳能电池效率从22.8%提升至25.5%,同时T工作寿命从200小时延长至1000小时,是目前报道中效率最高、稳定性最突出的单晶钙钛矿太阳能电池之一。

Science最新:钙钛矿层在工业纹理硅片上的一致性生长以制备高稳定性叠层太阳能电池来源:钙钛矿材料和器件 发布时间:2025-12-19 13:55:59

前言:钙钛矿-硅串联太阳能电池的实验室效率已接近35%。我们采用基于蒸汽的共蒸发方法,在金字塔纹理硅基底上均匀沉积高质量的钙钛矿层,从而制备出效率、稳定性和可重复性都得到增强的钙钛矿–硅串联太阳能电池。利用TFPTMS调控吸附动力学带来的薄膜质量提升,钙钛矿–硅叠层太阳能电池在工业纹理化硅片上实现了超过31%的光电转换效率,并具有增强的可重复性。钙钛矿–硅叠层太阳能电池的EQE谱和反射曲线。

透明导电电极对钙钛矿-硅叠层太阳能电池性能的影响来源:钙钛矿材料和器件 发布时间:2025-12-18 13:35:54

牛津大学的一位研究人员发现,透明导电电极可使钙钛矿-硅叠层太阳能电池效率降低超过2%,损失与电阻、光学效应和几何因子权衡有关。基于此,Bonilla提出了一个统一的光学-电气模型,考虑了双端钙钛矿-硅叠层太阳能电池设计中的这些因素。而叠层电池通常采用中间或者背TCEs,这进一步降低性能。据Bonilla称,这些损失与实验结果一致,显示在氧化铟锡沉积、抗反射涂层或原子层沉积屏障层中微调,直接导致先进叠层电池的性能可测量提升。