太阳能产业主要由光伏和光热组成。而作为光伏发电系统的核心。太阳能电池技术一直制约在太阳能的利用。可以说,当下光伏产业最主要的问题,就是电池技术的突破。那么下面小编分四期为大家全面解读一下,如今太阳能电池技术到底发展到哪一步……
























索比光伏网 https://news.solarbe.com/201511/02/181776.html
太阳能产业主要由光伏和光热组成。而作为光伏发电系统的核心。太阳能电池技术一直制约在太阳能的利用。可以说,当下光伏产业最主要的问题,就是电池技术的突破。那么下面小编分四期为大家全面解读一下,如今太阳能电池技术到底发展到哪一步……
























本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。
经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!
近日,印度光伏制造商Emmvee Photovoltaic Power宣布,其旗下子公司Emmvee Energy位于卡纳塔克邦班加罗尔附近Sulibele Hoskote Taluk的2.5GW光伏组件厂正式投产,公司组件总产能由此提升至10.3GW,产能扩张计划按IPO招股书披露时间表顺利推进。
加快构筑新型电力系统重要支撑开启我国光热发电规模化发展新征程──《关于促进光热发电规模化发展的若干意见》解读为贯彻落实党的二十届四中全会提出的加快经济社会发展全面绿色转型,建设美丽中国要求,我国正加快构建新型电力系统,积极稳妥推进和实现碳达峰、碳中和。为推动光热发电产业化、规模化发展,国家发展改革委、国家能源局印发《关于促进光热发电规模化发展的若干意见》。
前言:钙钛矿-硅串联太阳能电池的实验室效率已接近35%。我们采用基于蒸汽的共蒸发方法,在金字塔纹理硅基底上均匀沉积高质量的钙钛矿层,从而制备出效率、稳定性和可重复性都得到增强的钙钛矿–硅串联太阳能电池。利用TFPTMS调控吸附动力学带来的薄膜质量提升,钙钛矿–硅叠层太阳能电池在工业纹理化硅片上实现了超过31%的光电转换效率,并具有增强的可重复性。钙钛矿–硅叠层太阳能电池的EQE谱和反射曲线。
兼具高光电效率与机械弹性的有机太阳能电池对于可穿戴设备至关重要。本文天津大学叶龙等人引入一种广泛适用的策略,使用弹性体SEEPS,其通过精细调节与受体的相容性来实现OSCs的增韧。SEEPS诱导显著的次级弛豫以耗散应变能,使断裂应变提高超过11倍。
通过进一步分析,科学家发现水平排列的PMEAI抑制了Pb和I空位的缺陷,并诱导钙钛矿/C60界面内建电场的反转,从而最大限度地减少界面复合损失。他们解释说,界面电场被PMEAI反转,从C60指向钙钛矿,显著加速电子提取并抑制复合,从而突破了钝化层对电流密度和填充因子的传统限制。电池在65摄氏度下1500小时后,仍保持97%的初始效率。
复旦大学、南京理工大学、同济大学、太原理工大学、上海辉纳思光电科技、东华大学和上海工程科技大学的研究人员通过设计高性能锡基钙钛矿太阳能电池报告了无铅钙钛矿光伏发展的里程碑。锡基钙钛矿吸收剂因其毒性较低、环境友好和理论效率高而被广泛认为是铅基钙钛矿吸收材料的有前途的替代品。同时,它诱导了一种超润湿表面形貌,促进了致密、均匀和缺陷抑制的锡基钙钛矿薄膜的形成。
钙钛矿缺陷和较差的底部界面极大地限制了无机卤化铯钙钛矿太阳能电池的稳定性和效率。研究发现,AAESA分子与CsPbIBr前驱体成分之间的相互作用减缓了钙钛矿的结晶速率,从而制备出具有更高晶体质量和更大晶粒的CsPbIBr钙钛矿薄膜。由此制备的具有碳电极的平面CsPbIBr钙钛矿太阳能电池的效率达到了10.89%。
中国几所大学的研究人员报告说,通过引入三氟甲磺酸钠作为双功能离子调节剂,钙钛矿太阳能电池制造取得了进展。本研究建立了一种综合分子水平策略,用于调节钙钛矿体系中的结晶动力学和缺陷化学。NaOTF介导的离子调控框架为高效、长期稳定的钙钛矿太阳能电池的设计提供了一种通用且可扩展的途径,为下一代光电器件中的受控晶体生长和缺陷钝化提供了宝贵的指导。
近日,印度太阳能组件制造商SolexEnergy宣布与德国康斯坦茨国际太阳能研究中心签署谅解备忘录,双方将携手开发先进太阳能电池制造技术。该公司拟未来五年投资15亿美元扩大制造能力,重点提升对美国市场的出口份额。值得一提的是,Solex在2024年印度可再生能源展期间推出该国首款矩形电池供电太阳能组件,已展现技术突破决心。
同时,偶极钝化有效减轻了叠层器件互连层引入的NBG子电池的接触损耗,在全钙钛矿串联太阳能电池中表现出创纪录的30.6%的PCE。这标志着多晶薄膜太阳能电池的效率首次超过30%。
洛桑联邦理工学院、西北大学、多伦多大学、考纳斯理工大学和横滨东荫大学的研究人员最近实现了全无机钙钛矿太阳能电池有史以来最高的效率之一。这一过程使钙钛矿表面更能抵抗温度、湿度和其他环境条件,从而延长器件的使用寿命。无机钙钛矿太阳能电池可以通过使用二维/三维钙钛矿异质结构的表面钝化而受益。这一方法提高了无机钙钛矿太阳能电池和组件的效率,同时确保其在高温下的稳定运行。



