技术应用:一种单级光伏并网系统的MPPT算法的分析(上)【精华】

来源:OFweek太阳能光伏网发布时间:2014-09-15 23:59:59
 随着环境污染日益严重以及能源危机的加剧,清洁的可再生能源在电力系统中占的比重也越来越大,太阳能凭借其独有的优势成为新能源首选。因此,了解光伏发电系统的发电原理以及提高发电效率的方法是非常重要的。这里介绍了一个针对并网型光伏发电系统的MPPT算法。该系统采用单级式结构,省去了储能环节,拓扑结构简单,且效率高。

众所周知,光伏电池板作为光伏系统里很重要的组成部分,是整个系统能量的来源,不可或缺。但光伏电池容易受到外界温度、日照强度等环境因素的印象,使得其输出功率始终在发生变化。为了充分利用太阳能电池板并使系统能尽可能地稳定工作,光伏并网系统中最大功率跟踪技术的加入便显得十分必要。从电子系统方面考虑,对光伏组件进行最大功率点跟踪是降低发电成本、提高发电效率的最直接、最有效的方法。

1、光伏电池输出特性分析

光伏电池受外界因素(如环境温度、日照强度等)影响,输出具有强烈的非线性,其数学模型可表示为:

技术应用:一种单级光伏并网系统的MPPT算法的分析(上)


式(1)也即光伏电池的I-U特性关系,其中:I、U分别为光伏电池输出电流和端电压;A、B与PN结材料特性相关的系数;k为波兹曼常数;T为绝对温度;q=1.602*10-19C为电荷电量;Rs、Rsh为别为等效串联电阻和等效并联电阻。

将式(1)转化为工程化数学模型,并加入适当补偿银子,可建立光伏电池的软件仿真模型,对于该模型本文采用PSIM仿真软件来建立,并结合MATLAB软件对该模型的可用性和正确性进行验证,仿真结果如图1所示。

技术应用:一种单级光伏并网系统的MPPT算法的分析(上)1




图1 太阳能电池仿真模块光伏特性曲线

由图1中的四张图我们可以得出如下两条关于光伏特性的结论:

(1)在光伏电池结温不变的情况下,光伏电池的输出最大功率随日照强度的增强而增大,且最大功率点对应的电压几乎相同;在日照不变的情况下,太阳能电池的输出最大功率随组件结温的升高的变化趋势与恒温日照变大情况下功率变化趋势相反,结温越大,太阳能电池能输出的最大功率反而越小,且最大功率点对应的电压也随着结温的升高而下降。

(2)在光伏电池结温不变的情况下,日照强度越大,光伏电池的短路电流也越大,恒流区对应的端电压区间也越小;在日照不变的情况下,光伏电池的结温几乎不对短路电流产生影响,随着温度的上升极板的输出短路电流只是略有增加,而光伏电池的开路电压则随着电池结温的升高而下降,且下降幅度较大。



2、单级式光伏并网发电系统

2.1、单级式光伏并网发电系统拓扑

单级式的光伏并网发电系统由光伏阵列、DC-AC环节及滤波环节等构成。控制部分则主要有最大功率点跟踪控制及你变控制,前者控制系统工作于光伏阵列的最大功率点,后者控制直流到交流的逆变过程。其拓扑结构框图如图2所示。

技术应用:一种单级光伏并网系统的MPPT算法的分析(上)2


图2 单级式光伏并网系统结构框图

2.2、最大功率点跟踪控制策略

早期的最大功率跟踪采用固定电压法(CVT)实现,虽然能保证系统稳定工作,但却无法使系统真正工作于最大功率点,造成了大量的能量损耗。近年来,随着数字控制技术的发展,MPPT逐渐引入到光伏并网系统中,目前,国内外研究的MPPT控制算法很多,如扰动观察法(P&O)、电导增量法(INC)、滞环比较法等,另外,为了提高系统的鲁棒性,许多学者把一些智能控制算法引入到MPPT中,如人工神经网络法、模糊控制法等,这些算法都有着各自的一些优缺点和适用场合。

普通的MPPT控制算法多为一阶的控制策略,通过改变相关的控制量,使得光伏阵列的输出功率或一些相关变量发生变化,通过判断变化前后这些变量在曲线上的位置确定下一步的控制方式,从而使得系统工作点逐步向最大功率点靠近。这种控制方式在双级或离线式的光伏逆变器中是可行的,但是在单级式的光伏并网系统中一阶的MPPT控制策略稳定性差,将会导致母线电压崩溃或输出功率振荡,系统无法正常工作。

早期的CVT法虽然无法真正寻优到最大功率点,但其稳定性高,而常规的MPPT控制算法虽能寻优到最大功率点,但稳定性差,因此,为了兼顾系统稳定性和功率点寻优的准确性,本文将CVT法与一类改进扰动观察法结合,提出了一种新的适合单级式光伏系统的MPPT控制策略,考虑光伏阵列工作点易随环境幻化而变化,因此本文的CVT采用模糊PI来实现,为了便于下文说明,这里将此法简称为FPO-MPPT,其控制框图如图3所示。

技术应用:一种单级光伏并网系统的MPPT算法的分析(上)3


图3 FPO-MPPT控制框图

FPO-MPPT算法的核心思想是稳压为主,控流为辅。即系统正常工作过程中首先要确保母线电压的稳定,在母线电压稳定的前提下再去调节输出电流以控制回馈到电网的功率。这样便可保证在光照变化相当剧烈的情况下,系统也能稳定地向电网回馈电能,不致因母线电压的崩溃而使系统停止供电。



3、模糊PI控制器设计

3.1、模糊化

模糊控制中的被观测量通常是一个在一定精度范围内的精确数值量,而模糊控制的操作是基于模糊集合理论的,因此,要进行模糊操作首先要对被观测量进行模糊化,模糊化必须按照一定的隶属度函数来进行,定义输入量的隶属度函数通常由三角形、梯形和吊钟型,理论上来讲吊钟型最为理想,但在工程上实现时计算复杂,可操作性不强。实践证明,用三角形或梯形函数的实现性能与吊钟型的并没有十分明显的差别,真正对控制器性能影响较大的是隶属度函数对论域的覆盖面大小,考虑到隶属度函数曲线的简单化和芯片处理的方便化,工程商常用三角形或梯形的隶属度函数来对输入量进行模糊化。

对于本文的系统,要求输入偏差绝对值lel小余20%,取量化的基本论域为[-6,6],总共13个量化等级,量化因子,并对量化结果进行四舍五入运算,取偏差e在论域上的语言集合为{NL,NM,NS,Z,PS,PM,PL}。

对于偏差变化率的绝对值|lel|,要求其不能大于6,取量化的基本论域为[-6,6],总共7个量化等级,量化因子,同样,要对量化结果进行四舍五入运算,取偏差变化率|e|在论域上的语言集合为{NL,NM,NS,Z,PS,PM,PL}。

对输入输出的隶属度函数曲线都选为梯形,如图4所示。

技术应用:一种单级光伏并网系统的MPPT算法的分析(上)4


图4 隶属度函数曲线


3.2、确定模糊规则

模糊规则用来修正PID控制器的参数,因此,模糊规则表的选取十分重要。模糊规则推理的输入输出都是模糊量,不同的模糊推理的出来的结果是不一样的,而采用不同的模糊推理方法,语言变量的分档也是不一样的。模糊推理方法有Zadeh法、Mamdani法和Baldwin法等,本文采用Mamdani发,也即MAX-MIN法来进行模糊推理,其方法为:分别在不同规则中采用各自推理的前件的总隶属度去切割本推理规则中后件的隶属度函数以得到输出结果,最后对所有的结论进行模糊逻辑并运算,得到总的推理结果,简单来说就是:前件取极小值,后件取极大值。
 根据PID调节规律,结合实际光伏阵列的端电压与输出电流的关系情况,得到表1所示的调节规则表,其中表1(a)为|Kp|的模糊规则,表1(b)为|Ki|的模糊规则,这些规则都是用模糊语言量来表示的。
 表1 模糊PI控制规则表
 (a)|Kp|规则表

(b)|Ki|规则表


 运用MATLAB的模糊工具箱,画出本文的模糊控制器的非线性关系曲面图,其中图5(a)是|Kp|与e、|e|的关系,图5(b)是|Ki|与e、|e|的关系,普通PID调节器在xyz三维空间里是一张通过坐标原点的平面,其具有线性调节规律,而模糊控制器在三维空间中是一张通过原点的分片二次曲面,整张曲面毕竟一个阶数可以很高的非线性调节规律,故其整体控制效果要优于普通的PID调节器,模糊控制器在控制过程中的前期阶段具有模糊控制器的全部优点,而在控制过程的后期阶段又具有PID调节器的所有优势,因此是一种性能良好的控制器。
 

3.3、反模糊化

经过模糊推理后的结果是一些语言量的模糊结果,这种结果是无法对精确的模拟或数字系统进行控制的,我们必须进行反模糊化,通过精确化计算得出此模糊集中最有代表意义的确定值作为系统的控制输出。反模糊化有很多种不同的方法,如重心法、最大隶属度法、中位数法等,重心法不仅有公式可循,而且理论上比较合理,它涵盖利用了模糊理论的所有信息,并根据隶属度的不同而有所侧重,因此本文选用重心法作为反模糊化的方法。

索比光伏网 https://news.solarbe.com/201409/15/209853.html
责任编辑:solar_robot
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
《电力中长期市场基本规则》解读之二︱新型电力系统下的电力中长期市场重构“组合拳”来源:国家能源局 发布时间:2025-12-30 16:00:05

在此背景下,《电力中长期市场基本规则》审时而生。面对市场运行与发展的挑战,《电力中长期市场基本规则》主要进行了以下四个维度的优化提升。对此,《电力中长期市场基本规则》在促进中长期与现货市场深度耦合、有机联动方面作出了系统性安排。《电力中长期市场基本规则》的印发,标志着我国电力市场化改革进入系统整合、制度统一的新阶段。

《关于促进光热发电规模化发展的若干意见》解读之一︱加快构筑新型电力系统重要支撑 开启我国光热发电规模化发展新征程来源:国家能源局 发布时间:2025-12-25 09:32:22

加快构筑新型电力系统重要支撑开启我国光热发电规模化发展新征程──《关于促进光热发电规模化发展的若干意见》解读为贯彻落实党的二十届四中全会提出的加快经济社会发展全面绿色转型,建设美丽中国要求,我国正加快构建新型电力系统,积极稳妥推进和实现碳达峰、碳中和。为推动光热发电产业化、规模化发展,国家发展改革委、国家能源局印发《关于促进光热发电规模化发展的若干意见》。

《关于促进光热发电规模化发展的若干意见》解读之二︱推动光热发电高质量规模化发展 助力加快构建新型电力系统来源:国家能源局 发布时间:2025-12-25 09:28:24

加大项目支持力度,推动光热发电规模化发展。加强光热发电综合要素保障,支持光热发电高质量发展。

Science最新:钙钛矿层在工业纹理硅片上的一致性生长以制备高稳定性叠层太阳能电池来源:钙钛矿材料和器件 发布时间:2025-12-19 13:55:59

前言:钙钛矿-硅串联太阳能电池的实验室效率已接近35%。我们采用基于蒸汽的共蒸发方法,在金字塔纹理硅基底上均匀沉积高质量的钙钛矿层,从而制备出效率、稳定性和可重复性都得到增强的钙钛矿–硅串联太阳能电池。利用TFPTMS调控吸附动力学带来的薄膜质量提升,钙钛矿–硅叠层太阳能电池在工业纹理化硅片上实现了超过31%的光电转换效率,并具有增强的可重复性。钙钛矿–硅叠层太阳能电池的EQE谱和反射曲线。

天合储能BESS Basics系列访谈:探索热失控下Elementa 系列储能系统的安全边界来源:天合光能 发布时间:2025-12-18 09:11:23

在最新一期BESS系列视频中,天合储能聚焦NFPA69标准,对Elementa储能系统防爆安全设计进行了详细解读。除系统级建模分析外,天合储能同样高度重视以实物测试验证安全设计的真实有效性。仿真分析与实物实验的相互印证,共同构成了Elementa系列储能系统的安全护城河。通过本期视频,天合储能系统展示了其在气体检测、快速响应、工程化通风及系统级安全设计方面的整体能力。

炎和科技与昕诺飞达成战略合作,将聚焦钙钛矿光能电池与智能照明系统的深度融合!来源:钙钛矿光链 发布时间:2025-12-17 14:48:33

12月12日,湖南炎和智能科技有限公司(以下简称“炎和科技”)与全球照明科技领导者昕诺飞(中国)投资有限公司(以下简称“昕诺飞”)正式签署战略合作协议。双方将聚焦钙钛矿光能电池与智能照明系统的深度融合,联合打造“光发电+光服务”行业新生态,为智能家居、智慧城市、健康照明等领域的规模化应用提供创新解决方案,助力行业高质量发展。

天津大学叶龙AM:一种通用弹性体增韧剂用于解决高效有机太阳能电池的脆性问题来源:知光谷 发布时间:2025-12-09 14:08:39

兼具高光电效率与机械弹性的有机太阳能电池对于可穿戴设备至关重要。本文天津大学叶龙等人引入一种广泛适用的策略,使用弹性体SEEPS,其通过精细调节与受体的相容性来实现OSCs的增韧。SEEPS诱导显著的次级弛豫以耗散应变能,使断裂应变提高超过11倍。

西安电子科技大学张春福&朱卫东&巴延双综述:用于高性能直接X射线检测的毫米级多晶钙钛矿来源:知光谷 发布时间:2025-11-28 11:11:57

近期,西安电子科技大学张春福团队全面回顾了MPMHPX射线探测器的研究进展。最后强调了MPMHPX射线探测器所面临的关键问题,并对其未来发展进行了展望。要点2:总结了MPMHPX射线探测器的成像结果总结了单像素、线阵与平板阵列三类MPMHP成像方案。

COP30上的隆基瞬间:绿色能源,从贝伦传出最强音!来源:隆基绿能 发布时间:2025-11-26 11:45:07

11月10日至21日,COP30大会于巴西贝伦召开。这一个个瞬间,共同拼凑出隆基以“绿色创新,成就共同未来”为主题的完整行动图景。现在,就让我们通过一组现场图片,共同回顾隆基在COP30的精彩足迹,感受绿色能源为地球带来的无限可能。

舒印彪: 加快构建新型电力系统需重点开展理论创新的三个方向来源:中国能源报 发布时间:2025-11-26 09:20:25

中国电机工程学会理事长、中国工程院院士舒印彪11月25日在“2025年中国电机工程学会年会”(以下简称“年会”)上表示,新型电力系统是传统电力系统的继承与发展,在理论、技术、产业三大体系和体制机制等方面需要创新突破,走出一条适合我国国情的电力系统发展道路。

“光储直柔”模式走红:新型电力系统的中国式创新来源:中关村昌晟能源科技示范应用产业联盟 发布时间:2025-11-21 15:08:22

过去十年,中国新能源装机快速增长,风光发电量占比持续走高,随之而来的是电力系统的两大挑战:波动性加剧与调节能力不足。传统依赖同步机组的交流电网,难以在高比例新能源场景下维持稳定。在这一背景下,“光储直柔”模式走红并非偶然,而是新能源时代的必然选择。所谓“光储直柔”,并不是简单的光伏 + 储能,而是以 直流汇集 + 储能调节 + 柔性接入设备 为核心,通过电力电子实现对电网友好的柔性输出。这意味着从“新能源适应电网”转向“电网主动适应新能源”,实现了一次电力系统逻辑的根本转变。