光伏组件用背板紫外老化浅析(组图)

来源:发布时间:2013-11-20 10:16:10

索比光伏网讯:随着光伏产业的发展,光伏电站已经在全球范围内发电,源源不断的对外提供绿色清洁能源。光伏组件要持续发电 25 年,在设计之初,就要考虑环境对组件的影响,包括风雪的机械载荷、紫外线辐射、风沙冲击、酸雨等等,从而选择最好的材料。

原材料的选择,通常是看它们在一系列测试之后的性能表现,好的原材料对组件成品的性能保障是必要的,因此,原材料的测试以及用于组件后的测试都非常重要,前两篇文章对光伏组件用背板的落砂实验、湿热老化进行了阐述,本文将对光伏组件用背板紫外老化进行深入分析。


图一 不同波长的太阳光谱图

我们知道,紫外线具有较短的波长和较高的能量,对材料特别是高分子材料具有很强的破坏性,由于组件封装中广泛使用的背板和 EVA 都是高分子材料,这些材料在户外的老化通常是在紫外线、温度和湿度的共同作用下发生的,因此在选择封装材料时紫外老化测试是必不可少的一项测试。

IEC 61215 紫外预处理实验

在 IEC 61215 中,对组件进行热循环/湿冻试验前需进行紫外辐照处理,以确定相关材料及粘连连接的紫外衰减,相应装置包括:紫外试验箱、温度传感器、紫外辐照仪等。

实验时,组件的温度范围控制在 60±5℃,温度传感器安装在靠近组件中部的前或后表面,紫外辐射光源在组件试验平面上其辐照度均匀性为 ±15%,波长范围为 280~320nm 和 320~385nm,精度为 ±15%,其中,组件经受波长在 280~385nm 范围的紫外辐射为 15kWh/m-2,波长在 280~320nm 的紫外辐射为 5kWh/m-2。

要求:紫外辐射后无严重外观缺陷,最大输出功率衰减不超过试验前测试值的 5%,绝缘电阻应满足初始试验同样的要求。


回到现实的环境中来

IEC 验证的设计实际上只相当于70天的户外曝晒,而且也没有对组件背面进行曝晒测试,为了更好的理解户外的真实情况,国外一些研究机构,像美国可再生能源实验室NREL、弗劳恩霍夫太阳能研究所 Fraunhofer(ISE)等,建立了各区域的年紫外线剂量,利用这些信息,计算地面至背板的光反射率,模拟出测试条件下的建议曝晒时数,以及沙漠、热带及温带气候下的25年户外曝晒量。

研究机构沙漠热带温和

Fraunhofer~120~35~20,~30(city,Alps)

NREL---78.2 Typical annual---

Atlas91.7(Phoenix,USA)78.5(Miami & S.France)56.9(Tokyo & Lochem,NL)

表一 国外研究单位相关年紫外线剂量

IEC 15 kWh = 70 days, so implied annual value is 78.2 kWh,

(1) M. Koehl, Indoor and Outdoor Weathering of PV Modules, Proc of SPIE Vol 7048 704806-4, (2008)

(2) M. Kempe, Ultraviolet light test and evaluation methods for encapsulants of photovoltaic modules, Sol.Energy Mater.Sol.Cells, 94 (2010)

(3) Weathering of Plastics: Testing to Mirror Real Life Performance, George Wypych, p17 (1999),

(4) R. Chadysiene and A. Girgzdys, Ultraviolet Radiation Albedo of Natural Surfaces, J. Env, Eng. Land. Mgmnt,, 16(2): 83-88 (2008)


值得注意的是,目前行业一般仅进行 15-100kWh/m-2 的紫外老化测试,而这些建议的曝晒量比目前测试计划中大多数组件制造厂商所以用的高出剂量 2 至 18 倍!因此,为了真实模拟户外老化,应对组件背面进行 171-275kWh/m-2 的紫外老化测试。

EVA 紫外老化失效模式

EVA 处于玻璃和背板的保护中,老化主要来自紫外线照射,早期的 EVA 由于配方原因,长期户外使用会出现黄变,目前已基本解决。光伏组件在户外经过长期曝晒后,EVA 会发生黄变、脱层等不良现象。需要注意的是,EVA 在老化后对紫外线的阻隔能力下降,会引起背板的黄变及脱层,这是非常危险的。


                                                                                      


不同厂家 EVA 紫外老化后在紫外光区透光率变化趋势也不同,如下图所示。


图四 EVA 老化后在紫外光区域透光率变化趋势


背板紫外老化失效模式

要说背板的紫外老化模式,得先了解背板外层的材料,一般来说,背板的内外两层最好都是含氟聚合物,含氟聚合物之所以具有不同于其他材料的特殊性能,是因为氟原子的引入,使含氟聚合物异常稳定。氟原子位于元素周期表第 Ⅶ 主族,原子序号为 9,核外电子的分布为 1S2 2S2 2P5,也就是说,氟原子核外电子全部分布在第一、第二层原子轨道上,离原子核比较近,原子核内的9个正电荷牢固地将核外电子吸引在其周围。这就决定了氟原子的原子半径比较小,故而原子核吸引电子的能力就大,即电负性大。当氟原子与碳原子组成共价键时,由碳原子提供的共享电子也进入第二层轨道上,所以 C-F 键的键长比 C-H 键的键长和 C-C 键的键长短的多,因此 C-F 键的键能比较大。氟原子结构的这一特性就决定了含氟的膜层的化学稳定性高。

相关数据证明,有机化合物中所含的氟原子越多,C-F 键的键长越短,键能越大。例如 CH3F 的 C-F 键长为 0.142nm,相应的 C-F 键的键能为 389KJ/mol,而 CF4 的 C-F 键的键长为 0.136nm,相应的键能为 543KJ/mol。后者比前者的键能大的多,所以由其组成的含氟膜层化学稳定性更高。

另外,随着含氟有机化合物中氟原子的增加,相应的 C-C 键的键长也随之缩短,其键能也有所增加,所以含氟有机化合物中的化学键不容易发生断裂,在宏观上则表现为其耐腐蚀性、耐化学药品性及热稳定性好。

太阳对有机化合物起破坏作用的是可见光到紫外光部分,尤其是紫外光部分,这部分光波的波长在 200~760nm 的范围内,其中 400~760nm 波段为可见光部分,200~400nm 波段为紫外光部分,具体波长与能量关系见表二。

表二 紫外光到可见光范围内波长及能量关系


对于在户外使用的有机化合物,当其吸收了一个能量大于其化学键键能的光子时,便可以造成断键,从而使化合物遭到破坏。对于 CHF3 化合物,其 C-F 键键长为 0.135nm,全氟化合物的 C-F 键键长为 0.136nm,相对应的共价键能为 543.6KJ/mol,该键能已经接近紫外光中能量最大的光波(200nm)的能量(598.3KJ/mol),相当于 220nm 光子的能量,而大于 220nm 波长光的能量在全部紫外光中所占比例又很少,所以在可见光到紫外光范围内造成 C-F 键破坏的可能性极小,这也就是含氟化合物具有优异的耐侯性的原因。

背板在封装好之后,由于EVA和玻璃的阻隔,短期的紫外老化很难判定其质量,在第九届CSPV大会上,尚德电力的代表分享了他们在紫外老化实验的一些信息。


图五 背板正反面黄变现象

当裸板(EVA面)进行紫外老化后,出现裂纹的背板与EVA之间的粘结力普遍下降,且均已<40N/cm,另外,表层材料出现裂纹后失去了对内层PET的保护能力,PET 直接暴露在空气中,易水解、碎裂。


上述实验仅仅考虑了紫外单项因素,未考虑到紫外、温度和湿度的综合效应,同时,背板在紫外老化后也应测试其基本性能。

总结

我们知道,背板之所以能对太阳能电池组件进行有效保护,主要归功于背板的双面均含有氟,由于含氟材料的特性,使背板能有效防止紫外线的侵蚀,从而更好的保护太阳能电池板,保证其使用寿命。

双面氟,才可靠!

索比光伏网 https://news.solarbe.com/201311/20/226396.html

责任编辑:solar_robot
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
年省300万!这座商场的光伏屋顶成“隐形印钞机”来源:阿特斯阳光电力集团 发布时间:2025-07-10 15:49:18

​面对用电负荷大、电费成本持续攀升的经营痛点,商业综合体如何破局? 位列南京地标商业综合体之一的弘阳广场,给出了亮眼答案:选择与全球光储解决方案领导者阿特斯阳光电力集团合作,在其近8万平方米屋顶成功打造4.6兆瓦分布式光伏电站。这座矗立于六朝古都的“绿色电站”,不仅年节约电费支出超300万元,更成功将商业空间转型为“能源生产者”,打造了商业地产降本增效与绿色发展的标杆样本!

用于高效率、超稳定钙钛矿太阳能电池的局域相位调制异质结构韩国蔚山国立科学技术院&高丽大学来源:钙钛矿学习与交流 发布时间:2025-07-10 11:12:04

同时实现有效的缺陷钝化和优异的电荷提取能够最大化钙钛矿太阳能电池(PSCs)的功率转换效率(PCE)。与先前已有的基于异质结的 PSCs 不同,韩国蔚山国立科学技术院&高丽大学研究团队引入一种全新的局域相位调制异质结构,它能够对 PSCs 产生上述效果。在该结构中,我们将大量新开发的有机半导体(CY 分子)掺入整个钙钛矿晶格以及其表面和晶界。 这种局域相位调制异质结构 PSCs 实现了 26.0% 的优异 PCE(认证值为 25.28%)。多种表征证实了掺入 CY 的器件相比未掺入 CY 的参考器件

20250708 广东汕头:利用农村道路建设光伏廊道无需办理建设用地审批来源:佛山新能源 发布时间:2025-07-09 17:23:58

7月2日,广东省汕头市自然资源局发布《关于激活土地要素助力“百千万工程”的通知》,要求市、县级国土空间总体规划优先保障重点产业,通过镇级国土空间总体规划、村庄规划调整村庄建设边界、公共服务和公用设施布局,优先保障农村一二三产业融合发展、乡村振兴、基础设施、科教文体卫以及具有特定选址要求的产业项目,开展规划评估优化调整用地布局。

亿晶光电技术研发中心实验室顺利通过CNAS复评审来源:亿晶光电 发布时间:2025-07-09 17:03:13

2025年7月6日,常州亿晶光电科技有限公司(以下简称“亿晶光电”)技术研发中心(CNAS认可实验室)成功通过中国合格评定国家认可委员会(CNAS)的定期复评审。此次顺利通过,标志着该中心在管理体系、技术能力和检测水平等方面持续符合国际标准要求,其检测结果继续获得全球互认资质,为亿晶光电产品拓展海外市场提供了强有力的权威技术支撑。

北京理工大学李红博 AM:32.0%!纳米晶核模板策略用于具有增强均匀性和能级对准的高效钙钛矿/硅叠层太阳能电池!来源:钙钛矿人 发布时间:2025-07-09 15:43:11

文章介绍宽带隙 (WBG) 钙钛矿太阳能电池 (PSC) 对于提高串联太阳能电池的效率至关重要,但存在严重的光电压不足和卤化物偏析,大大降低了其性能和稳定性。基于此,北京理工大学李红博等人开发了一种纳米晶-核模板 (N

26.02%空穴传输材料P3CT-TBB!华东师范大学方俊锋&李晓冬用于高效倒置钙钛矿太阳能电池的厚度不敏感聚合物空穴传输层来源:钙钛矿学习与交流 发布时间:2025-07-08 09:54:19

近年来,在空穴传输层(HTLs),尤其是自组装单层(SAMs)的辅助下,倒置钙钛矿太阳能电池(PSCs)发展迅速。然而,目前器件性能强烈依赖于 HTL 厚度,其厚度需严格控制在 <5 nm,若 SAM HTL 厚度超过 10 nm,将导致效率大幅损失。在此,华东师范大学方俊锋&李晓冬报道了一种厚度不敏感的聚合物 HTL(P3CT-TBB),通过 1,3,5 - 三(溴甲基)苯(TBB)对聚 [3-(4 - 羧基丁基)噻吩](P3CT)进行 p 型掺杂制备而成。TBB 可从 P3CT 的噻吩链中夺取电

华科/海南大学李雄 NC:26.46%!交联多功能双层聚合物缓冲层用于提高钙钛矿太阳能电池的效率和稳定性!来源:钙钛矿人 发布时间:2025-07-07 10:46:34

华中科技大学/海南大学李雄等人设计了一种由聚乙烯亚胺 (PEI) 和 2-((2-甲基-3-(2-(2-甲基丁酰基)氧基)乙氧基)-3-氧代丙基)硫代)-3-(甲硫基)琥珀酸 (PDMEA) 组成的双层多功能聚合物缓冲液,插入金属电极/传输层的界面。该缓冲液通过在金属层和 PDMEA 之间形成硫醚-金属-羧基螯合环来减轻金属原子扩散。此外,它通过基于 Lewis 酸碱反应的 PDMEA 羧基和 PEI 胺基之间的原位交联来促进高效的电子传输并抑制界面复合。因此,这种设计有效地减少了器件制造和作过程中不需要

JA Solar Power Talk全球首场对话:标准、追赶、平衡与创新来源:晶澳科技 发布时间:2025-07-03 10:57:52

2025年6月30日,在晶澳科技北京总部,TÜV北德光伏总经理缪存星先生、江苏沃莱新材料副总裁朱晓六女士及晶澳科技组件研究部负责人,作为晶澳科技首期“JA Solar Power Talk”栏目的嘉宾,面向全球从业者举行了一场别开生面的直播活动。

榴莲提取的有机硫分子修饰界面杭州电子科大严文生/周勤&福建物构所高鹏AFM通过鲁棒分子桥构建稳定掩埋界面用于高性能钙钛矿光伏来源:钙钛矿学习与交流 发布时间:2025-07-03 09:43:51

良性掩埋界面对显著提升钙钛矿太阳能电池的性能至关重要。然而,在钙钛矿薄膜沉积过程中确保掩埋界面层的完整性具有挑战性。由于钙钛矿前驱体溶液的高极性特性,大多数界面修饰材料会被溶解,从而影响器件的可扩展性和长期稳定性。杭州电子科技大学严文生/周勤&福建物构所高鹏研究团队引入一种有机分子来修饰 SnO₂与钙钛矿之间的掩埋界面,结果表明,溶解度和功能基团对构建良性掩埋界面至关重要。此外,SnO₂与钙钛矿层之间有效的化学桥接作用可抑制缺陷、改善结晶度并降低能量损失。最终,性能最优的钙钛矿太阳能电池实现了 25.08

柔性全钙钛矿叠层电池认证效率24.01%!电子科技大学材料与能源学院副院长团队:空穴传输界面的双边锚定策略!来源:钙钛矿太阳能电池之基石搭建 发布时间:2025-07-02 10:15:27

本研究提出采用2-溴乙胺氢溴酸盐(2-BH)在窄禁带钙钛矿/空穴传输层(PEDOT:PSS)界面实施双边锚定策略。2-BH的引入与PEDOT:PSS和钙钛矿层形成双重强键合,同步增强界面粘附力与电荷传输效率。同时,Sn²⁺氧化的抑制显著改善了钙钛矿薄膜的形貌与结晶度。

异质伴同行 鑫动760|中国光伏太阳能高效760W+俱乐部第十三次圆桌会议圆满落幕来源:浙江润海新能源有限公司 发布时间:2025-07-02 09:20:10

6月26日,中国光伏太阳能高效异质结760W+俱乐部第十三次圆桌会议在江苏江阴圆满召开。本次会议由轮值主席单位中建材浚鑫科技有限公司牵头主办。安徽华晟新能源、广东明阳光伏、广东泉为科技、国电投新能源、国晟世安科技、金刚光伏、江苏光势能、琏升光伏科技、上海恒羲光伏、中建材浚鑫、浙江润海新能源、珠海鸿钧新能源(以上按中文首字母排序)等十二家俱乐部成员单位共聚一堂,并特邀中国国检测试控股集团股份有限公司、长沙壹纳光电材料有限公司、SOLARZOOM光储亿家共襄盛举。