有机薄膜太阳能电池的结构与制作技术

来源:发布时间:2012-04-19 15:54:37

索比光伏网讯:1前言

作为典型可再生能源的太阳能光伏发电,近年来,面向各个产业及至人民的生活、住宅,正急速的推广应用。但目前的单晶硅太阳电池,难于大幅度降低成本。单晶硅太阳电池的原料硅占到制造成本的30%以上。因此,对原料不依赖于单晶硅的非晶硅系列太阳电池进行了开发。紧随非晶硅系列太阳能电池之后的有机太阳能电池,其原料丰富,且价格相对较低,并采用了基本廉价的非真空加工工艺,故这类结构的太阳能电池是人们所期待的。

有机太阳能电池,有利用光电化学的色素增感型太阳能电池,和藉助有机EL逆过程实现光电变换的有机薄膜型太阳能电池两种。本文主要介绍有机薄膜型太阳能电池的开发。并阐述了其有关的发电原理和安装中的关键技术。

2有机薄膜太阳能电池的发电原理

图1有机薄膜太阳电池的断面图及发电机理

图1所示为有机薄膜型太阳能电池(OTFSC)的断面。OTFSC主要由承担基本光吸收与空穴输送的π-共轭高分子和承担电子输送的低分子受体分子所构成。基底上涂覆了能使透明电极平滑化并承担空穴输送的空穴输送材料(PEDOT-PSS),以及π共轭高分子(P3HT)和电子受体分子(C61-PCBM)的混合液。当这一混合液的溶剂挥发时,相当于p型半导体的π共轭高分子,与相当于n型半导体的电子受体分子(低分子化合物)混合,构建成这一混合物的相分离,形成所谓整块异质结相分离的随机结合界面。电介质薄膜可补偿整块异质结薄膜上的整流性,电介质薄膜设置的极薄,并设置了铝质的里面电极,这样,电池就已完成。高分子系有机薄膜太阳能电池的最大特点是:相当于p型半导体的π共轭高分子与相当于n型半导体的电子受体分子混合,藉助这一混合物的相分离,构建了接合界面的整块异质结。引入这一相分离结构,是因为有机薄膜太阳能电池经过了激励子(exciter)的扩散。OTFSC首先是由π共轭高分子或者电子受体分子的光吸收,产生激励子。然后,p型或n型激励子,在具有整块异质结结构的薄膜内部扩散。在接合界面上,与相互不同的分子会合时,开始电荷分离,能生成空穴与电子。由于有机半导体的电荷在分子内的局部化,为了使基于光吸收所生成的电荷增加,必须在激励子可能扩散的范围内设置p-n接合界面。从而,不是二元的平面接合,在薄膜内部构建微细的相分离,因此,藉增大接合界面面积的整块异质结结构,可大幅度提高效率。

空穴与电子一旦生成,空穴在π共轭高分子的分子间,电子在电子受体分子的分子间各自输送,从电极取出。有机分子的电荷输送,基于扩散或分子间的跳跃(hopping)传导,但高分子系OTFSC的电荷输送机理尚未充分理解。对电荷输送必须的自生电场(固有电位)产生来源及其电场强度优化,今后应予以考虑。

3高效率化的关键技术

决定OTFSC性能的参数:短路电流密度、开路电压、填充因子(曲线因子)等都起着重要作用,现将改进的事例分述如下。

3.1短路电流密度的改善

为提高短路电流密度,进行了下面几项开发:(1)光吸收范围扩大(提高吸收强度,力求吸收光波的长波化);(2)电荷输送的改善;(3)增大p-n结界面的接合面积;(4)促进电荷的生成等。这些改善为了充分发挥OTFSC的特点。

有机薄膜太阳能电池,以polythiophene系、poly-p-phenylene-vinylene系、polyfluorene系等材料为基础进行了研究。即使带隙接近2ev,长波侧的光吸收也非常少,如旨在得到光吸收能量整体的积分值,增大整体异质结结构的膜厚度是较好的。激励子扩散长度因被限制在50nm左右,故单纯的增大膜厚是有限的。在这样一种背景下,对长波区可以光吸收的图2所示窄带隙聚合物进行了开发。

图2窄带隙聚合物得一侧


窄带隙聚合物因能确保长波侧的光吸收,故不仅能增大光吸收能量的积分值,而且,因原来的π共轭高分子与可以光吸收的波长区不同,将二者叠层后能形成2端子的串联结构。

构成整块异质结的π共轭高分子与电子受体分子的电荷输送,受覆盖于薄膜的内部电场推动而扩散,或以跳跃式传导输送至电极。此时,空穴和电子的输送因经由分子轨道的重叠,分子轨道重叠良好的结晶状态,理所当然就是理想状态。径向规则的π共轭高分子,在薄膜刚形成之后分子链的方向性是无规则的无定向。通过后置的缓冷,增大结晶化程度。即使对具有整块异质结的薄膜,藉后置的缓冷也已确认是提高了polythiophene系的结晶化程度。故可改善太阳电池的短路电流密度。若采用玻璃转移温度以上的后置缓冷,则效果更佳。

藉助π共轭高分子与电子受体分子的混合比例、溶剂的种类、涂敷的方法以及大气、溶剂的挥发条件等,可以改变整块异质结的结构。可将这些参数控制到一定程度,还要考虑相分离的尺寸和均匀性以及电荷的输送。对于这样的整块异质结相分离结构的控制,是提高发电效率不可缺少的重要因素。不断尝试着对这一相分离结构用块状(block)共重合体控制的方法。利用共重合体的高分子链分子量和亲、疏水性等性质,块状共重合体可周期地构建成纳米级的高分子相分离结构。块状共重合体中,相分离尺寸为10nm~数十nm左右,与由π共轭高分子和低分子的电子受体分子构成的相分离结构相同,当然可实现以下的致密结构。现正处于材料合成的试制阶段。这种材料不能达到顶级的发电效率,无法构建按微相分离结构设置电极,还须进一步研究相分离结构内部的电荷输送等。而且,电荷输送和耐久性,与材料纯度有很大的依赖关系,故从材料精加工方面考虑,也应予以验证。

激励子向整块异质结结构内部扩散,到达p-n结界面之际的电子受体分子,其电子拔出强度对OTFSC的电荷生成很重要。氧化钛和氧化锌等金属氧化物具有电子受容性(从有机分子拔出电子的氧化作用),图3所示,由金属氧化物和π共轭高分子形成异质结接合界面,藉此可以构成太阳能电池。这一场合下,通过金属氧化物强烈的氧化作用,在π共轭高分子内形成了多数阳离子游离基。作为迅速地空穴输送,阳离子游离基有利于正电荷的形成。金属氧化物的氧化作用与π共轭高分子的空穴移动程度,在时间上差异小最理想。

图3采用多孔质金属氧化物的OTFSC

3.2开路电压的改善

有机薄膜太阳能电池的电压被认为是:起因于π共轭高分子的HOMO(最大占有分子轨道)级与电子受体分子的LUMO(最小非占有分子轨道)级之级差。以图1为例,对应于两个能级的级差,实际得到的开路电压0.6V相当小,考虑是电压损耗等若干原因。可大致区分为基于内部阻抗的Ω损耗和基于电荷再结合(逆向流动的漏泄电流)损耗。

一般的太阳能电池能,用图4所示等值电路表示。从这一等值电路可知,串联阻抗大和并联阻抗小、电流泄露的场合下,从外部取出的电压降低,从而,应尽可能减小相当于串联阻抗的界面接触电阻和电极薄片阻抗等。而且,生成的电荷有助于有机薄膜的内部电场,并各自输送空穴和电子。整块异质结的结构,对π共轭高分子与电子受体分子两方面与电极接合的可能性大,产生反向电流的可能性高。

图4OFTSC的等值回路


作为串联阻抗之一的界面,为减小界面的接触电阻,整块异质结薄膜形

成后进行后置性缓冷(postanneal)是有效的。一旦缓冷至π共轭高分子的玻璃转移温度以上,聚合物薄膜与电极间存在的结构缺陷等就会得到缓解,并减小了接触电阻。在以蒸着低分子的OTFSC和非晶硅太阳能电池为首的无机薄膜太阳电池中,利用这一结构缺陷的缓解以达到性能改善,具有前所未见的效果。

对反向电流的抑制,如图5所示,藉设置金属氧化物薄膜能予以改善。在负极的铝与整块异质结薄膜间,设置非晶的氧化钛,能抑制从负极空穴的漏泄。这一氧化钛薄膜相对于π共轭高分子,作为电子受体功能,不仅有防止逆电流的作用,而且能改善电荷的生成。另一方面,在正极侧将氧化镍薄膜设置在电极与整块异质结薄膜之间,则能抑制电子的漏泄。氧化镍的厚度10nm最佳。详细的机理研究等尚不充分,有待今后验证。

图5设置金属氧化物薄膜的事例:(a)含空穴阻挡层的横断面;(b)含电子阻挡层的横断面

4有机薄膜太阳电池的大型化与柔性化

OTFSC光电转换率超过4%的事例始见报导,这些报导中电池的受光面积局限在极小的面积上,现状是在0.25㎝²以下。这在晴天时通过功率换算还不足1mW。能达到实用有效功率的电池制造技术是目前的研究课题。OTFSC的理论效率一般认为约16%。预测能实用的,不是大功率的太阳能发电,而是充分利用可见光线吸收强度大的室内用太阳能电池。已试制了采用柔性基板的光伏电源,柔性OTFSC的试制品如图6所示。

图6柔性OTFSC的试制品

试制的柔性OTFSC的功率约60mW,在性能上还并不充分,用玻璃基板比柔性基板能提高4倍左右的功率。

①试制品中采用了并联升压型结构。因太阳能电池不能对应于瞬时的功率变动,故太阳能电池的功率一旦升压,利用锂(Li)二次电池贮能方式,能跟踪瞬时的功率变动。

②基板的平整性和气孔等对OTFSC性能影响大,今后应加强对室内照明等供电系统的基础研究,力图将OTFSC向室内供电系统拓宽应用。

5结束语

有机薄膜太阳能电池作为下一代太阳能电池,被人们所普遍关注。但有关其耐久性及转换效率等,还存在很多尚待解决的课题。而且,考虑面向民生的太阳能电池及对应非晶硅太阳能电池的现状,旨在使太阳能电池低成本化的技术难点也多。

有机薄膜太阳能电池的研制,应力求向低成本、高效率化发展。充分有效利用资源、减少制造生产中导致的环境负荷,不断提供新的附加价值,使OTFSC从简单的供电器件迅速发展成下一代理想的太阳能电池。

索比光伏网 https://news.solarbe.com/201204/19/257073.html

责任编辑:solar_robot
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
金泽大学实施钛矿太阳能电池的铅稳定技术实地测试来源:钙钛矿材料和器件 发布时间:2025-12-09 16:18:43

东芝能源系统公司主导该项目,长州工业株式会社、电通信大学和金泽大学共同实施。该试验涉及将叠层的钙钛矿太阳能电池与铅稳定技术集成到户外测试模块中。该活动计划于2025年8月8日至2026年12月举行。

天津大学叶龙AM:一种通用弹性体增韧剂用于解决高效有机太阳能电池的脆性问题来源:知光谷 发布时间:2025-12-09 14:08:39

兼具高光电效率与机械弹性的有机太阳能电池对于可穿戴设备至关重要。本文天津大学叶龙等人引入一种广泛适用的策略,使用弹性体SEEPS,其通过精细调节与受体的相容性来实现OSCs的增韧。SEEPS诱导显著的次级弛豫以耗散应变能,使断裂应变提高超过11倍。

吴素娟&李永&刘治科AM:硫代羧酸盐介导的缺陷抑制与碘分子清除:实现22.16%高效稳定CsPbI₃钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-09 13:57:01

AP中的硫代羧酸盐基团可强螯合欠配位Pb,钝化缺陷并抑制铅泄露;其含氮部分与I形成氢键,抑制碘空位形成。本工作证明了AP作为高效界面调控剂的有效性,并为稳定高效全无机PSCs的多功能分子工程提供了新思路。高效缺陷抑制与能级优化:AP处理显著提升薄膜结晶质量、降低陷阱态密度,并优化钙钛矿/空穴传输层能级对齐,实现高达22.16%的转换效率与1.29V的高开路电压。

JACS:π-共轭偶极结构:通过协同偶极叠加实现太阳能电池阴极修饰、欧姆接触与缺陷钝化来源:知光谷 发布时间:2025-12-09 13:45:40

通过协同利用分子内偶极与锚定基团-金属电极间形成的偶极,Rh-Py可显著增强界面偶极矩,不仅有效强化内建电场,还优化了有机太阳能电池的欧姆接触,使其能量转换效率突破20%。此外,Rh-Py与Pb之间的强相互作用可有效钝化钙钛矿薄膜中的Pb缺陷。

郑州大学张懿强AM:双模式分子调控钙钛矿结晶,实现高效稳定的FAPbI₃太阳能电池与组件来源:知光谷 发布时间:2025-12-04 10:34:21

本研究引入二苯基碳酸酯作为双功能分子调控剂,可同时调控FAPbI薄膜的成核与生长过程。这种协同调控机制获得了均匀、大晶粒的钙钛矿薄膜,并显著降低了缺陷密度。因此,基于DPC的钙钛矿太阳能电池实现了26.61%的冠军效率,优于对照组器件。

王开&马静&刘生忠AEL:带隙与晶体质量的协同提升实现高效稳定钙钛矿/硅叠层太阳能电池来源:知光谷 发布时间:2025-11-28 10:23:55

宽带隙钙钛矿材料对叠层太阳能电池至关重要,但富Br软晶格可能引发严重的离子聚集与迁移,显著损害器件效率与稳定性。由此,晶体质量提升的钙钛矿薄膜表现出更高的离子迁移能垒和增强的界面载流子提取能力。这些协同效应使单结钙钛矿太阳能电池效率高达23.24%,单片钙钛矿/硅叠层电池效率达30.16%,并在热、湿、光应力下展现出优异的稳定性。

南航赵晓明AEM:调控配体吸电子效应设计配体反应性以实现户外稳定的钙钛矿太阳能电池与组件来源:知光谷 发布时间:2025-11-27 13:47:25

2D/3D钙钛矿异质结构提升了钙钛矿太阳能电池的性能。本文南京航空航天大学赵晓明等人研究了芳香铵配体的吸电子强度对钙钛矿界面稳定性的影响。此外,组件在30天户外运行中保持稳定的功率输出,显示出其在实际应用中的潜力。研究亮点:配体吸电子能力调控界面稳定性:通过杂环中氧原子数量的增加,系统调控芳香铵配体的吸电子能力,最强吸电子配体ABDI有效抑制2D相形成并阻止离子互扩散。

AEM:用于非富勒烯有机太阳能电池的两亲性聚合物共网络:调控分子堆叠实现高效下转换来源:知光谷 发布时间:2025-11-25 14:41:54

两亲性聚合物共网络由纳米尺度相分离的亲水和疏水域组成,近年来在被动光子学应用中引起关注。掠入射广角X射线散射表明,发光团的分子平面性和二面角通过范德华相互作用影响BHJ的堆叠,进而影响电荷传输。研究亮点:创新性引入APCNs作为多功能支架:利用其纳米相分离结构,成功将亲水性下转换发光团与疏水性PM6:Y6体异质结在空间上隔离,解决了材料不相容和能级不匹配问题。

AFM综述:面向极端与新兴应用的稳健钙钛矿太阳能电池来源:知光谷 发布时间:2025-11-25 14:38:44

钙钛矿太阳能电池因其轻质、超高功率转换效率和可调光电特性,为超越传统光伏技术的应用提供了前所未有的机遇。然而,目前关于PSCs在这些特殊环境中的研究仍较为零散,且对其在耦合外部应力下的耐受机制缺乏深入理解。

段玉伟&彭强AM:原位自交联聚合与开环加成反应精密构建内部封装层,实现高效环保的钙钛矿太阳能电池来源:知光谷 发布时间:2025-11-25 14:32:26

在钙钛矿顶部表面覆盖内部封装层对于提升钙钛矿质量、实现高性能钙钛矿太阳能电池至关重要。本文成都理工大学段玉伟和彭强等人通过硅氧烷基团的自交联聚合和环氧基团的开环加成反应,原位合成了一种新型内部封装层,以克服长期以来被忽视的IEL缺陷,例如消除副产物的不利影响,以及在提高钙钛矿质量和最小化Pb泄漏之间取得平衡。

Nature -- 采用双缓冲层结构的柔性钙钛矿/硅叠层太阳能电池来源:新能源与能效 发布时间:2025-11-18 15:24:01

本研究提出了一种具有应力释放机制的双缓冲层策略,通过协同作用减轻后续溅射沉积过程中的离子轰击,在保持高效电荷提取的同时增强界面粘附性。通过调控原子层沉积的吹扫时间设计的疏松SnOx缓冲层可耗散应变能,而致密SnOx层则能确保稳固的电接触。