石墨烯-半导体量子点复合体系薄膜制备及光电性能研究取得新进展

来源:Solarbe.com发布时间:2010-03-29 11:57:48

低维碳纳米材料的发现或合成,重新引起了人们对碳材料的巨大研究兴趣,加快了纳米材料和技术的发展。自2004年英国Manchester大学A.K.Geim组用力学剥离方法制备出石墨烯(Graphene)材料后,Graphene优异性能被陆续揭示,成为目前室温导电速度最快、力学强度最大、导热能力最强的材料,有望在纳电子学、能源、环境、生物医学等领域得到应用。然而,由于特殊的零带隙线性能带色散关系,Graphene在紫外到近红外光学吸收范围内呈现带间吸收主导的恒定的光电导现象,无共振吸收峰,在光电转化中的性能应用受到限制。半导体量子点(QDs),是另一个引起人们研究兴趣的纳米体系。它在生物荧光标记、电致发光、光电器件方面具有重要应用前景。QDs具有分立的电子能级和尺寸依赖的能级间距和带隙,以及CdSe,PbSe等小带隙QDs呈现激子倍增现象,有望在高效光电转化器件中得到应用。然而,QDs是由无机半导体的芯和绝缘的有机配体外壳组成,有机配体阻碍了QDs之间的耦合,增加了组装体系中的无序,导致半导体QDs体系具有极低电导率和光电导率,限制了QDs在光电方面应用。因此,改善半导体QDs体系的电导率对它们在光电转化方面的应用具有重要意义。

中科院苏州纳米技术与纳米仿生研究所研究生耿秀梅在导师程国胜、刘立伟研究员指导下,与中科院物理所和国家纳米中心科研人员合作,在石墨烯-半导体量子点复合体系光电转化方面取得了新的进展,成功地完成了新型的石墨烯-半导体量子点非共价复合材料体系材料制备,实现了具有光电转化性能的透明导电薄膜。通过QDs的配体置换,和利用π-π相互作用,解决了两者在水溶液中共溶以及增强了两者间的相互作用等问题,使化学转化的Graphene与CdSe量子点通过吡啶结合在一起(图1)。当用可见光照射时,光电导实验证实了激发的电子从CdSe到石墨烯的迁移。通过增加CdSe量子点的浓度,复合体系暗电导逐渐降低,光敏性能逐渐增强。由于石墨烯的引入,复合体系薄膜的光电导率,与纯量子点体系的薄膜相比,获得十个数量级的增加(图2)。该项研究对改善半导体量子点体系的电导率,制作柔性大面积石墨烯-半导体量子点复合体系薄膜及其光电转化应用具有指导意义。

相关成果在Advanced Materials 22,638(2010)上发表。这篇论文2009年11月在Advanced Materials网络版发表后,即被该刊物评为2009年12月份访问量最高的前5篇论文之一。已申请中国专利1项。

上述研究工作得到国家自然科学基金委、苏州市科技发展计划项目资助。

图1. 石墨烯-量子点非共价复合体系形成示意图

图2.石墨烯-量子点复合体系薄膜以及光电性能。(a)石墨烯柔性透明薄膜。(b)石墨烯-量子点复合体系薄膜。(c)石墨烯-量子点复合体系薄膜器件。(d)石墨烯、量子点以及复合体系光吸收。(e)石墨烯-量子点复合体系薄膜透过率。(f)石墨烯-量子点复合体系薄膜光电响应。
 


索比光伏网 https://news.solarbe.com/201003/29/9746.html
责任编辑:solarbe太阳能网资讯中心
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
AFM:硫族钙钛矿 LaScS₃-石墨烯复合薄膜实现 p 型透明导电材料来源:知光谷 发布时间:2025-12-24 09:22:19

然而,缺陷阻碍了LSS薄膜实现有效的导电性。本工作不仅为基于溶液法制备硫族钙钛矿薄膜提供了可扩展的路径,也为开发用于透明电子器件的p型透明导电材料提出了新策略。

AEM:环境条件对无反溶剂两步法FAPbI₃薄膜及太阳能电池性能的影响来源:知光谷 发布时间:2025-12-23 09:58:30

综上,该研究表明,在干燥气氛中制备活性层或在最终退火时引入适度湿度,可获得两步法FAPbI太阳能电池的最佳性能与稳定性。

中科院半导体所游经碧、蒋琦团队《Nat. Commun.》:宽带隙钙钛矿相分布均匀化策略实现高性能钙钛矿/硅叠层太阳能电池来源:先进光伏 发布时间:2025-12-15 22:18:05

钙钛矿/ 硅叠层太阳能电池是突破单结电池效率极限的核心技术路径,其中宽带隙(WBG)钙钛矿顶电池的性能直接决定叠层器件的最终表现。为匹配硅底电池的电流输出,宽带隙钙钛矿需引入高溴含量和Rb 合金化,但这会导致结晶动力学过快、相分离严重,形成δ-RbPbI₃等非钙钛矿副相,大幅降低器件效率与稳定性。

清华大学团队在钙钛矿深蓝光二极管研究领域取得新进展来源:钙钛矿材料和器件 发布时间:2025-12-15 21:51:46

清华新闻网12月12日电 钙钛矿材料因其优异的光电特性与可溶液加工等优势,在发光二极管领域展现出广阔的应用前景,尤其在色纯度、荧光量子产率及波长可调性方面表现突出。目前,钙钛矿蓝光器件的研发主要围绕混合卤素与准二维结构两种策略展开,通过组分调控与维度工程,天蓝光区域的发光效率已提高至25%以上,显示出良好的发展态势。

欧达光电获评浙江省钙钛矿太阳能电池重点企业研究院来源:钙钛矿工厂 发布时间:2025-12-05 08:59:37

12月3日,浙江省经济和信息化厅就2025年度重点企业研究院、企业研究院拟认定名单进行公示,拟认定浙江省可信数据智能重点企业研究院等211家省重点企业研究院和浙江省亿达时智能灯光企业研究院等1442家省企业研究院。

CsPbIBr2:通过一种通用有机添加剂调控钙钛矿结晶并修复底部界面以制备高性能卤化铯钙钛矿太阳能电池来源:无机钙钛矿太阳能电池 发布时间:2025-11-13 14:20:37

钙钛矿缺陷和较差的底部界面极大地限制了无机卤化铯钙钛矿太阳能电池的稳定性和效率。研究发现,AAESA分子与CsPbIBr前驱体成分之间的相互作用减缓了钙钛矿的结晶速率,从而制备出具有更高晶体质量和更大晶粒的CsPbIBr钙钛矿薄膜。由此制备的具有碳电极的平面CsPbIBr钙钛矿太阳能电池的效率达到了10.89%。

中山大学莱恩功能材料研究所Nature Sustainability:用内置超分子复合物降低钙钛矿太阳能电池的铅毒性来源:矿物薄膜太阳能电池 发布时间:2025-11-11 11:53:07

该论文通过在钙钛矿太阳能电池(PSCs)中嵌入由2 - 羟丙基-β- 环糊精(HPβCD)和1,2,3,4 - 丁烷四羧酸(BTCA)组成的自交联超分子复合物,同时解决了铅泄漏、铅毒性及器件稳定性问题;改性后PSCs 冠军功率转换效率(PCE)达22.14%,严重破损器件经522 小时动态水冲刷仍保持97% 初始效率且铅泄漏量< 14 ppb(符合美国EPA 标准),铅毒性降至与无铅PSCs 相当水平,还实现了铅的闭环回收,为PSCs 商业化提供可持续路径。

NMP/DMF和DMSO/DMF溶剂体系中用于大面积太阳能组件的真空辅助钙钛矿薄膜晶化来源:钙钛矿材料和器件 发布时间:2025-10-24 14:37:59

杭州电子科技大学,杭州众能光电科技有限公司,杭州职业技术学院和杭州科能新能源有限公司的科学家们系统比较了两种常见的钙钛矿前驱体混合溶剂体系—NMP/DMF和DMSO/DMF,旨在研究它们的配位特性如何影响真空辅助钙钛矿结晶过程中薄膜的形成结果。基于NMP/DMF和DMSO/DMF溶剂体系的钙钛矿薄膜形成示意图。基于这些机制,使用NMP/DMF体系制备的钙钛矿薄膜表现出优异的光电性能。

清华大学材料学院-林红团队合作在钙钛矿太阳能电池研究领域取得新进展来源:钙钛矿材料和器件 发布时间:2025-10-21 13:58:54

近日,清华大学材料学院林红教授团队合作在柔性钙钛矿太阳能电池埋底界面二甲基亚砜残留去除方面取得重要研究进展。动态接触角,热重分析及红外光谱等综合分析表明IDPAC分子能够通过化学钝化削弱SnO2与PbI2对DMSO的吸附作用,从而获得埋底界面孔洞消除、残余应力应变松弛的高质量柔性钙钛矿薄膜。清华大学材料学院2022级博士生张子灵为论文第一作者,清华大学材料学院教授林红和厦门大学教授李鑫为论文通讯作者。

调控溶液扩展与中间相演变以制备大面积钙钛矿薄膜及太阳能组件来源:钙钛矿材料和器件 发布时间:2025-10-21 13:51:47

本研究强调了一种可扩展且具有成本效益的高性能制备钙钛矿太阳能电池和模组的途径。总之,通过引入各种添加剂,有效地控制了钙钛矿溶液的扩展和结晶行为,从而能够在常温条件下通过溶液自扩展工艺制备大面积钙钛矿薄膜。加入异丙醇显著改善了前体溶液的润湿性,促进了大面积均匀、高质量钙钛矿薄膜的形成。此外,通过优化溶液滴加方法,我们成功制备了均匀的大面积钙钛矿薄膜。

AFM:26.7%效率!铜铁矿型空穴传输材料实现钙钛矿的异相成核与外延生长以制备高性能太阳能电池来源:知光谷 发布时间:2025-10-17 09:08:53

在无机空穴传输材料上沉积的钙钛矿薄膜质量长期以来限制了相应器件的性能。基于CuCoO的冠军器件实现了26.70%和25.07%的高功率转换效率。异相成核与外延生长机制:CuCoO与钙钛矿之间近乎完美的晶格匹配促进了高质量钙钛矿薄膜的形成,显著降低了缺陷密度与残余应变。