采用声学显微镜确保太阳能电池的可靠性

来源:Solarbe.com发布时间:2009-08-25 10:29:05

    制造过程中光学不可见的异常和缺陷降低太阳能电池板的质量,需要采用声学显微镜来进行成像和分析,从而可在量产开始前修改工艺来减少缺陷,或确保在生产中没有引入缺陷。

    为了达到最高的效率,太阳能电池板制造商下了大力气。在设备安装初期,效率必须要高,在安装好以后,太阳能电池系统即使经受热应力及其他恶劣环境,也须保持多年的高效率。

    太阳能电池板的质量可能会由于产生于制造过程中的异常和缺陷而降低。在硅太阳能电池板中,典型的缺陷有裂纹、分层或气孔。起初,缺陷对效率可能只有很小的影响,在制造商进行电学测试或闪光测试时,它们的影响显得微不足道。然而,在太阳能电池板的使用过程中,这些缺陷可能会长大,一直到效率明显地降低。

    寻找这些光学不可见的缺陷是非常重要的,因为他们是装配过程中的缺点的证据。例如,在硅片里面的裂纹,它们很细小以至于不能通过视觉观察,但是由于硅是硬性的,所以当太阳能电池板正常使用被暴露在太阳底下时,热循环会使这些缺陷长大。

    在过去的两年中,采用声学显微镜来成像和分析太阳能电池及面板中的缺陷,这方面的发展相当迅速。声学显微镜在非破坏性成像上具有很长的历史,它的应用包括封装的集成电路、粘接晶圆和其他微电子器件,这些样品在材料和层状结构上都和太阳能电池及面板很相近。

    声学成像的目的是在设计阶段、样品阶段或早期生产时找到异常和缺陷,从而在量产开始之前修改工艺来减少缺陷。声学成像在量产中也会被用到,来确保在生产中没有引入缺陷。通过这种方法就可以获得设计在产品中的高效率。

    声学显微镜采用了一个超声波传感器来扫描感兴趣的区域,发送超声脉冲进入样品,然后接收从样品内部返回的回声。在这些产品材料中,超声波的速度很快,所以在扫描时传感器一秒内可以发射数千个脉冲,同时接收数千个回声。从每个有脉冲的地方得到的声学数据就是在声学图像中成千上万个像数中的一个。

    感兴趣的区域或大或小。扫描时一般只会牵涉到单个电池片,但是最近Sonocan有报道,现有的自动声学显微系统可以很容易地完成数米长的面板的扫描。用来产生像数的回声只来自电池片或面板内的材料界面,例如玻璃封盖和硅片之间的界面。这个玻璃-硅界面包含了非常薄的光学粘接剂,所以它实际上包括了两个材料界面。

    到达传感器的回声来自于电池片或面板内不同深度。为了只对感兴趣的深度进行成像,因此一些回声会被弃用。如果玻璃-硅界面正好是感兴趣的深度,从更深区域(如硅与基底的接触)返回的回声将会被排除,也不会在声学图像上显示。在声学显微的词汇中,回声会在玻璃-硅界面上被选通(gated)。通过选通更深的区域和忽略来自玻璃-硅深度的回声,更深的区域可以单独成像。为了实现测试,选通可以非常精确,例如只成像玻璃和光学耦合剂部界面,而不包含光学耦合剂底部和硅界面的图像。   

图1.硅电池和玻璃与硅间的粘接剂之间不规则的气孔的声学图像。

    图1是一个电池片局部区域的高度放大的声学图像。为了获得图像,回声被选通在玻璃和硅的界面,包括了玻璃和硅之间的粘接剂。

    三条水平的暗线是导线。不规则的白色区域是分层,可能位于粘接剂底部和硅之间。它们看起来很亮,这是应为反射的超声波很强,返回的回声信号有很高的放大倍数。分层似乎有扩张,在扩张过程中,它们被硅上的金属导线限制。同一个电池片中的其他分层具有同样的图形,所以分层很有可能位于光学粘接剂和硅之间。

    这些分层都很小,在目前的状态下它们对效率和可靠性只有很小的影响。但是测试说明粘接剂-硅界面易受分层的影响。如果更多的电池片或面板也显示了相似的分层,那么寻找分层的成因就很有意义。在大尺寸上,这样的分层会降低太阳能电池的效率,因为他们不仅反射超声波,还反射太阳光,因此会降低到达硅的太阳光的强度。    

图2.导电条较暗区域与硅之间有粘接;白色区域没有粘接。

    在图2中,水平的特征图像是导电条,或者更精确地说是导电条和硅之间的界面。箭头指向导电条右端尾部的那部分界面非常暗,表明回声具有较低的放大倍数,来自于两种材料间粘接较好的地方。但是大多数导电条和硅之间的接触区域都很明亮,意味着它们之间根本就没有接触。在工作时,这种未连接可能导致导电条过热而失效。   

图3.聚光电池和基底间的气孔会导致电池过热而失效。

    图3是一个硅电池与粘接硅电池的基底间界面的声学图像,这是一个聚光型电池,透镜把输入光聚焦到一个高效电池上。在硅和基底间有一层胶粘剂,所以声学图像包含了三种材料和两个界面,还显示了粘接的情况。

    红色的特征图像是胶粘材料中的气孔。气孔是非常有效的热绝缘材料。在聚光系统中,散热对于非常热的电池及其重要。而这里的气孔会阻碍电池的散热。气孔导致电池局部过热,而电池中热分布不均可能会导致产生裂纹。

    图像的自动分析显示,气孔占粘接区域5.48%的面积。在右下方扇形区域中,气孔更是占到11.69%。这个区域足以把该电池归类为一个缺陷电池。气孔可能会随着热循环而膨胀,但电池首先会过热而烧掉。

 

    图4.在声学图像中,大多数硅和金属焊垫间的焊缝都看不见。另外,硅中存在一条曲线形的裂纹。

    在图4中,回声被关闸在矩形的金属球垫上,而这些金属球垫及它们之间的连线被粘接到电池上。两个金属球垫应该各有四个焊接点。右边的金属球垫有一个完整尺寸(黄色箭头所示)和一个尺寸较小的焊接点;而左边的金属球垫只有微量的焊接点,所以这样一个设计在太空应用中是一个废品。另外,金属球垫上面的硅中有一个裂纹(红色箭头)。

    以上展示的声学图像说明了一些在太阳能电池板制造过程中可能产生的很常见的异常和缺陷。早期发现这些问题能使这些昂贵的失效在电池工作中更少发生。

 


索比光伏网 https://news.solarbe.com/200908/25/5799.html
责任编辑:solarbe太阳能网资讯中心
索比光伏网&碳索光伏版权声明:

本站标注来源为“索比光伏网”、“碳索光伏"、"索比咨询”的内容,均属www.solarbe.com合法享有版权或已获授权的内容。未经书面许可,任何单位或个人不得以转载、复制、传播等方式使用。

经授权使用者,请严格在授权范围内使用,并在显著位置标注来源,未经允许不得修改内容。违规者将依据《著作权法》追究法律责任,本站保留进一步追偿权利。谢谢支持与配合!

推荐新闻
Nat Commun:效率突破30%!复合中间复合层的高效钙钛矿/Cu(In,Ga)Se₂串联太阳能电池来源:知光谷 发布时间:2025-12-11 11:48:07

单片钙钛矿/CuSe串联太阳能电池在串联构型中具有独特优势,包括理想的带隙配对、全薄膜结构、优异的抗辐射能力和出色的稳定性。这项工作使单片钙钛矿/CIGS串联电池与领先的钙钛矿/硅和钙钛矿/钙钛矿技术相媲美,为下一代光伏技术提供了可扩展、多功能的框架。研究亮点:效率突破:研制出效率超过30%的单片钙钛矿/CIGS串联太阳能电池,创造了该体系的新纪录,显著缩小了与钙钛矿/硅串联电池的效率差距。

东华大学AFM:蒸汽辅助无损封装策略实现高效空气处理钙钛矿太阳能电池的全生命周期调控来源:知光谷 发布时间:2025-12-10 09:47:36

本文东华大学王宏志和张青红等人开发了一种无损封装策略,以实现空气处理PSCs的全生命周期管理。本工作为空气处理PSCs的全生命周期管理提供了一条有前景的途径。

AEM:原位双区域选择性锚定两性离子凝胶实现高效且机械耐用的柔性钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-10 09:46:24

在室内光照条件下,VIPS修饰的柔性器件效率超过40%。

金泽大学实施钛矿太阳能电池的铅稳定技术实地测试来源:钙钛矿材料和器件 发布时间:2025-12-09 16:18:43

东芝能源系统公司主导该项目,长州工业株式会社、电通信大学和金泽大学共同实施。该试验涉及将叠层的钙钛矿太阳能电池与铅稳定技术集成到户外测试模块中。该活动计划于2025年8月8日至2026年12月举行。

Joule:用可印刷碳阴极增强p-i-n型钙钛矿太阳能电池的可行性:极性反转的起源来源:知光谷 发布时间:2025-12-09 14:10:16

可印刷的后电极是钙钛矿太阳能电池规模化应用的关键技术。碳电极在n-i-p结构中已广泛应用,但其在p-i-n结构中的应用因界面能量失配而受限。

天津大学叶龙AM:一种通用弹性体增韧剂用于解决高效有机太阳能电池的脆性问题来源:知光谷 发布时间:2025-12-09 14:08:39

兼具高光电效率与机械弹性的有机太阳能电池对于可穿戴设备至关重要。本文天津大学叶龙等人引入一种广泛适用的策略,使用弹性体SEEPS,其通过精细调节与受体的相容性来实现OSCs的增韧。SEEPS诱导显著的次级弛豫以耗散应变能,使断裂应变提高超过11倍。

吴素娟&李永&刘治科AM:硫代羧酸盐介导的缺陷抑制与碘分子清除:实现22.16%高效稳定CsPbI₃钙钛矿太阳能电池来源:知光谷 发布时间:2025-12-09 13:57:01

AP中的硫代羧酸盐基团可强螯合欠配位Pb,钝化缺陷并抑制铅泄露;其含氮部分与I形成氢键,抑制碘空位形成。本工作证明了AP作为高效界面调控剂的有效性,并为稳定高效全无机PSCs的多功能分子工程提供了新思路。高效缺陷抑制与能级优化:AP处理显著提升薄膜结晶质量、降低陷阱态密度,并优化钙钛矿/空穴传输层能级对齐,实现高达22.16%的转换效率与1.29V的高开路电压。

李晓东&方俊锋AM:ITO纳米颗粒稳定倒置钙钛矿太阳能电池中空穴传输层的自组装来源:知光谷 发布时间:2025-12-09 13:43:55

近年来,随着自组装分子的应用,倒置钙钛矿太阳能电池的效率迅速提升,但SAM分子易脱附的问题严重制约了器件稳定性。本研究华东师范大学李晓东和方俊锋等人引入功能化的氧化铟锡纳米颗粒,以促进并增强SAM在基底上的自组装。与ITO基底上传统物理吸附、易脱附的OH不同,INPs上的OH基团键合稳定,能耐受溶剂冲洗和长期老化,从而抑制器件老化过程中SAM的脱附。

无机钙钛矿太阳能电池以950小时运行达到迄今为止的最高效率来源:钙钛矿材料和器件 发布时间:2025-12-05 14:38:39

无机钙钛矿太阳能电池实现了超过21%的创纪录效率。团队成功解决了长期存在的难题,发明了一种在完全无机钙钛矿太阳能电池上制造耐用保护层的方法。解决退化问题限制钙钛矿太阳能电池采用的主要障碍是快速降解,暴露于湿度、温度或压力等波动的大气条件下,会导致钙钛矿材料在效率和材料性能上迅速下降。

离子液体提高钙钛矿太阳能电池的长期稳定性来源:钙钛矿材料和器件 发布时间:2025-12-05 14:34:30

尽管单结钙钛矿太阳能电池的光电转换效率已突破27%,其商业化进程仍受限于长期运行稳定性的瓶颈。然而,即便在隔绝水与氧等外界应力的条件下,钙钛矿太阳能电池的寿命仍显著短于硅基器件。研究组设计并开发了一系列含乙二醇醚侧链的离子液体,以协同提升钙钛矿太阳能电池的效率与稳定性。该离子液体优先富集于钙钛矿底部,可显著抑制碘化铅的聚集及空隙的形成。

高度透明的钙钛矿太阳能电池效率为18.22%来源:钙钛矿材料和器件 发布时间:2025-12-05 14:31:49

印度的一个研究团队研究了基于室温工艺制备的非晶铟锌高导电透明电极在钙钛矿太阳能电池中的应用,这些器件可用于叠层和建筑集成光伏应用。其中包括在钙钛矿太阳能电池的后部透明电极中使用a-IZO。事实上,原型机的效率超过了基于c-ITO器件的15.84%功率转换效率。