当前位置:首页 > 光伏资讯 > 光伏要闻 > 正文

色素增感型太阳能电池优点显现 成本低可变颜色

发布时间:2009-08-13 16:33:00

被公认为新一代太阳能电池的色素增感型太阳能电池,其相关研发正如火如荼地展开。性能得到大幅提高的元件相继发表,解决低耐久性问题的材料开发,以及前所未有的新结构及新形状也接连不断地被提出。色素增感型太阳能电池优点突出,不仅能够以低成本进行制造,而且还可实现各种颜色。因此,家电厂商也在积极开发,2008年索尼宣布单元转换效率达到了10.1%,之后,松下电工也于2009年春季表示,“在室内用途方面,前景比硅型太阳能电池更为看好”。

实现15~16%的效率已为时不远

色素增感型太阳能电池由感光色素、氧化钛以及含有碘等的电解液构成。瑞士大学洛桑联邦理工学院(Ecole Polytechnique Federale deLausanne,EPFL)教授Michael Graetzel于1991年发表了转换效率为7.12%的单元,相关研发由此全面展开。Graetzel在2009年春季于东京大学举行的“革新性太阳能发电国际研讨会”上宣称,“2008年12月实现了12.3%的转换效率”。转换效率突破10%大关是在1992年,之后过了大约13年才超过了11%。此次超过12%是2008年的3年后的研究成果,性能提高的速度重新开始加快。

另外,采用多种色素的双结及三结型太阳能电池的开发也在不断推进,可以说实现15~16%的转换效率已为时不远。

  漏液问题有望通过粘土得以解决

截止目前,色素增感型太阳能电池的最大难点与其说是非转换效率,不如说是耐久性。耐久性方面最近也取得了重大进展。

东京大学尖端科学技术研究中心教授濑川浩司和专职副教授内田聪的研究小组开发出了一种新技术,即使在电解液中添加粘土实现凝胶化(固体状),转换效率也不会下降。该研究小组利用该技术试制了面积为0.16cm2的单元,实现了9.9%的转换效率,与使用原来的电解液时达到的10.1%相比,几乎没有区别。

 以前,色素增感型太阳能电池也被称为“湿式太阳能电池”,在太阳能电池技术中,是唯一担心出现“漏液”的方式。采用这种方式时,电解液一旦泄漏,氧化钛就会分解色素,从而丧失发电功能。为了不发生漏液,业内过去也曾有过电解液凝胶化的尝试,但却出现了电阻增大,转换效率下降的问题。而此次的凝胶状电解质则不同,电阻反而降低,使电流有所增加。“这就是电解液凝胶化技术的最新版,对此我们十分自信”(内田)。

粘土是仿照被称为“膨润土”的火山灰粘土合成而来。具体而言,就是用约1nm厚的板状分子层状重叠后,再由此形成大的簇群,从而获得了“触变性”特点。“触变性”是一种施加振动及压力时就会溶胶化(液状),而静置时数分钟即可返回凝胶状的特性。由于采用的是多间隙结构,因此水分及离子可在分子间轻松穿过。估计就是这种特性促进了电阻的降低。

  发电光纤也已面市

最近的太阳能电池,无论是哪种方式,都出现了将可视光和红外线一同用于光电转换,由此来提高转换效率的开发趋势。不过,这种做法存在一个很大的难点。这就是透明电极。

以前,太阳能电池一直采用将两个电极中的一个制成透明状,并向色素及半导体照射光线的方法。不过,ITO及FTO等透明电极尽管在可视光区域拥有较高透射率,但在红外线区域就会出现透射率下降的现象。

为了解决这一问题,九州工业大学生命体工学研究系教授早濑修二的研究小组开发出了不使用透明电极的太阳能电池——玻璃纤维状的色素增感型太阳能电池。

 该太阳能电池采用的方法是:使导入光纤的光在碰到光纤内壁后折射的部分被色素吸收,然后转换成电力。由于是不使用透明电极而直接向色素照射光,因此有望提高红外线的利用率。

就目前的转换效率而言,使用一种色素的产品“暂时还只有1%”(早濑)。不过,这是纤维直径达到9mm,而长度仅为数cm时的数值,因此“导入光纤的光有9成以上直接跑掉了。假如可以有效利用光,转换效率会相当高”(早濑)。光的有效利用有望通过减细并加长光纤等手段来实现。

早濑的研究小组还试制了使用多种色素的双结(串联)型及并联型元件,并对基本功能进行了确认。“通过改变色素的涂布面积,便可调节电流量,因此可轻松实现高效率化所不可缺少的电流匹配”(该研究小组)。而且,对于充分利用红外线这一原本的目的,“也可通过涂布多种色素来实现”。 (记者:野泽 哲生)

(编辑:xiaoyao)

责任编辑:solar_robot

特别声明:
凡本网注明来源: "索比光伏网或索比咨询"的所有作品,均为本网站www.solarbe.com合法拥有版权或有权使用的作品,未经本网授权不得转载、摘编或利用其它方式使用上述作品。

经本网授权使用作品的,应在授权范围内使用,并注明来源: "索比光伏网或索比咨询"。违反上述声明者,本网将追究其相关法律责任。
推荐新闻
太阳能电池效率新纪录:接近34%!

太阳能电池效率新纪录:接近34%!

最近,隆基绿能、苏州大学、香港理工大学、华能等机构合作在《自然》(Nature)上发表研究称,他们设计的太阳能电池经美国国家可再生能源实验室(NREL)认证,光电转换效率达到近33.9%,再次刷新了太阳能电池的世界纪录。更重要的是,这不是常用的单结太阳能电池(如硅太阳能电池),而是一种将钙钛矿与硅太阳能电池有效结合在一起的双结叠层太阳能电池。

太阳能电池可再生能源
2024-11-18
该光伏企业组件被美国海关扣押近4个月!

该光伏企业组件被美国海关扣押近4个月!

11月14日,Maxeon官网公布一则消息,称其太阳能电池板继续被扣留,并且莫名其妙地被排除在从其墨西哥制造工厂进口到美国市场的名单之外。

Maxeon太阳能电池
2024-11-15
总投资2亿美元!该公司拟在沙特建设5GW光伏电池组件工厂

总投资2亿美元!该公司拟在沙特建设5GW光伏电池组件工厂

近日,Desert Technologies宣布计划投资7.5亿沙特里亚尔(约2亿美元),在沙特阿拉伯西海岸吉达第三工业区建造一座5GW的太阳能电池组件工厂。这家总部位于吉达的制造商已同意与沙特工业城市和技术区管理局莫东(Modon)合作开发工业园区。

太阳能电池
2024-11-15
天合光能与FREYR签署合作协议

天合光能与FREYR签署合作协议

天合光能宣布与FREYR Battery达成交易协议,交易内容包括位于德克萨斯州威尔默的5GW组件制造厂。据双方介绍,交易预计将于2024年底完成。

天合光能太阳能电池板组件
2024-11-13
光伏行业面临七大痛点:挑战与机遇并存,未来发展路在何方?

光伏行业面临七大痛点:挑战与机遇并存,未来发展路在何方?

随着全球能源结构的转型升级,光伏行业作为可再生能源的重要组成部分,近年来得到了迅猛的发展。然而,在这一光鲜亮丽的背后,光伏行业仍然面临着诸多痛点,亟待解决。本文将详细剖析光伏行业目前存在的七大痛点,并

光伏行业痛点转换效率电网接入难题
2024-04-24
26.41%!钙钛矿电池再破效率纪录

26.41%!钙钛矿电池再破效率纪录

清华大学易陈谊团队设计并合成了新型多功能空穴传输材料 T2(化学结构如图所示)。该材料可以由低成本的商业原材料高产率的合成,适合大批量生产(已实现单次超过15克的合成),其原材料成本仅为常用spiro-OMeTAD价格的三十分之一。相较于spiro-OMeTAD,T2不仅跟钙钛矿具有更好的能级匹配,还与钙钛矿层的部分局部电子态密度(LDOS)有所重叠,这有利于增强电荷提取能力,降低电压损耗。T2与掺杂剂Li-TFSI具有强结合力,可形成无针孔的HTM层。

钙钛矿太阳能电池光电转换效率
2024-03-25
24.5%!国内再次刷新全钙钛矿叠层组件世界纪录效率

24.5%!国内再次刷新全钙钛矿叠层组件世界纪录效率

近日,南京大学现代工程与应用科学学院谭海仁课题组在大面积全钙钛矿叠层组件领域取得新突破,经国际第三方权威认证机构测试,其稳态光电转换效率高达24.5%,刷新了全钙钛矿叠层组件的世界纪录效率,为全钙钛矿叠层电池的量产和商业化应用奠定了技术基础。相关研究成果于2024年2月23日以“Homogeneous crystallization and buried interface passivation for perovskite tandem solar modules”为题,发表于Science期刊。

全钙钛矿叠层组件光电转换效率太阳能电池
2024-02-26
26.1%光电转换效率的钙钛矿电池诞生

26.1%光电转换效率的钙钛矿电池诞生

近日,中国科学院合肥物质科学研究院固体物理研究所(以下简称固体所)、中国科学院光伏与节能材料重点实验室研究员潘旭、田兴友团队与韩国成均馆大学教授Nam-Gyu Park、华北电力大学教授戴松元合作,首次发现阳离子分布不均匀是影响钙钛矿太阳能电池性能的主要原因,并成功制备出“均匀化”的钙钛矿太阳能电池,获得26.1%的光电转换效率,认证效率为25.8%。相关研究成果日前在线发表于《自然》。

钙钛矿太阳能电池光电转换效率
2024-02-19
返回索比光伏网首页 回到色素增感型太阳能电池优点显现 成本低可变颜色上方
关闭
关闭