10月20日,从复旦大学获悉,该校智能材料与未来能源创新学院青年研究员梁佳团队研发出锡基钙钛矿太阳能电池,其实现全生命周期无害化,突破了该领域光电转换效率的世界纪录。锡基钙钛矿太阳能电池虽绿色无害,但器件的稳定性和光电转换效率却比较低。经第三方权威认证,该太阳能电池光电转换效率达到17.7%,刷新了此前锡基钙钛矿太阳能电池光电转换效率约16.5%的世界纪录。
在这项工作中,通过SCAPS1D系统地研究了所提出的器件的结构,包括功率转换效率、HTL厚度、钙钛矿层、ETL以及温度、串联和分流电阻。所获得的器件具有1.46eV的开路电压,27.53mA/cm2的短路电流密度,填充系数为83.58%,效率为33.68%。HTL、钙钛矿吸收层和ETL的优化厚度分别为0.2、1.8和0.02微米(μm),而优化后每一层的掺杂浓度为1021/cm3。这项研究凸显了无铅钙钛矿在下一代太阳能电池中的潜力,并表明通过仔细的材料选择和优化可以获得高效率。
,据报道,与无图案样品相比,激光加工有助于提高效率,因为它具有更“均匀的结构以及更高的热和其他应力耐受性”。其它性能方面的测试正在进行中,包括降解研究和铅材料释放分析。它们将在项目的最后阶段结束。一些
意大利的研究人员正在解决两个金属卤化物钙钛矿太阳能光伏挑战,减少铅的使用并延长功率转换效率的稳定性,采用微聚光器和皮秒激光加工的新型组合。皮秒激光图案样本 热那亚大学来自热那亚大学和罗马大学 Tor
钙钛矿量子点因其优异的光电特性和溶液法制备的便利性,在太阳能电池和发光二极管领域展现出巨大的应用潜力。然而,在高温热注入合成过程中,配体之间的酰胺化反应会导致PbX2沉淀,进而引发缺陷形成,降低
载流子传输效率,限制了器件性能。本文提出了一种酰胺化延迟合成策略,通过引入共价金属卤化物来中断酰胺化反应,释放自由酸/胺,与PbX2配位形成规整的铅卤化物八面体,从而有效抑制PbX2沉淀和缺陷形成。实验
(PQDs)优势包括相位稳定性高、带隙可调、无需高温退火。目前效率纪录达18.1%,但表面配体影响电荷传输。2. 锡基钙钛矿作为无铅替代品,具有更低毒性、更窄带隙,但易氧化。常用甲脒锡碘FASnI₃材料
,通过添加剂工程提高稳定性,目前效率相对较低。3.
双钙钛矿如Cs₂AgBiBr₆,完全不含铅,但通常具有间接和较宽带隙,更适合辐射探测等应用。钙钛矿太阳能电池的基本表征电流密度-电压(J-V)曲线
研究人员使用钙钛矿电池开发了一种稳定的无硅太阳能电池板,通过气相渗透将钛掺入顶层。一名学生通过溶液处理沉积卤化物钙钛矿材料。Christopher McKenney/佐治亚理工学院太阳能正迅速
成为美国最重要的发电来源之一,7%的美国人使用它来为他们的家庭供电。然而,虽然太阳能为传统能源生产方法提供了一种可行的绿色替代方案,但科学家们仍在努力提高太阳能电池板制造过程的效率。太阳能电池板由许多
。信
用报告代替无违法违规证明改革逐步推行 ,实现数据多跑 路、企业少跑腿。( 三 )政务环境更加规范便捷。省级政府一体化政务 服务能力连续五年全国领先。政务服务逐步实现“指尖办 理” ,“粤省
、轴承钢等) 等钢铁材料制备技术 ,复合钢及钢铁基复合材料制备技 术,氢冶金、近终形连铸及短流程炼钢等低碳技术。( 三 )有色金属发展方向。铜铝合金深加工技术、铅 锌冶炼与深加工技术、有色金属节能减排技术
12月30日,重庆大学举行2024年度概念验证项目发布会,学校概念验证中心正式揭牌启动。会上,重庆大学发布了“手机壳”一键监测水质和果蔬农药残留、高效稳定的太阳能电池、无感体征监测电子织物等多项
科研成果。本次发布会还发布了高温物理性能测试仪器、无感体征监测电子织物、腔镜手术机器人等10个概念验证项目,并进行了路演。其中,高性能电驱动系统、高效稳定的钙钛矿太阳能电池组件、手机智能检测中枢三个项目
清华大学电机系易陈谊团队通过开发新的空穴传输材料结合真空蒸镀钙钛矿薄膜实现了26.41%的钙钛矿太阳能电池世界最高效率纪录。在光伏技术领域,钙钛矿太阳能电池(PSCs)以其突出的能量转换效率(PCE
匹配,还与钙钛矿层的部分局部电子态密度(LDOS)有所重叠,这有利于增强电荷提取能力,降低电压损耗。T2与掺杂剂Li-TFSI具有强结合力,可形成无针孔的HTM层。此外,T2中的硫原子可与钙钛矿/HTM
一个重要的研究方向。,4,材料毒性问题:虽然钙钛矿太阳能电池的生产过程中使用的原材料相对环保,但某些钙钛矿材料可能含有有毒元素,如铅等。这些有毒元素在电池的生产、使用和废弃过程中可能对环境和人体健康
造成潜在威胁。因此,开发无铅或少铅的钙钛矿材料是未来的一个重要研究方向。为了克服这些挑战,科研人员正在努力提高钙钛矿材料的稳定性。他们通过改进材料成分、优化晶体结构、采用先进的封装技术等方法来提升钙钛矿