摘要:在太阳能多晶铸锭中,如何降低硬质点占比一直是一个重要课题,硬质点的多少直接影响后续切片加工的断线率。大家普遍认为,多晶铸锭中硬质点主要为硅团簇,SiO2,SiC,Si3N4等混合物,其形成与投
炉原材料有着重要的关系。本文介绍了多晶原料及低等级原料的使用。经研究分析,原生多晶和低等级料在每次投炉中的最佳使用量,以权衡生产成本与品质。
目前,原生多晶是多晶铸锭选用的主要原料,经装料、铸锭、切
。
SiC作为下一代功率半导体的核心技术方向,与传统Si-IGBT模块相比, SiC功率模块最主要优势是开关损耗大幅减小。对于特定逆变器应用,这种优势可以减小逆变器尺寸,提高逆变器效率及增加开关频率
。目前,基于SiC功率器件逆变设备的应用领域正在不断扩大。但受制于成本因素,目前SiC功率器件市场渗透率很低,随着技术进步,碳化硅成本将快速下降,未来将是功率半导体市场主流产品。
(图五
用于光伏硅材料、蓝宝石等硬脆材料切割,而该等材料的主要传统切割方式为砂浆切割。因此,金刚线行业的市场空间主要取决于两个因素:一是金刚线对传统砂浆切割的替代程度,二是光伏行业、蓝宝石行业的发展状况
。
(1)金刚线切割对砂浆切割的替代情况
硅的莫氏硬度为 6.5,蓝宝石莫氏硬度为 9,因此,对硅、蓝宝石等材料的物理加工工具的硬度有较高要求。硅材料、蓝宝石的传统切割工艺主要为砂浆切割,该工艺是以
IGBT、MOSFET等功率开关管,以及变压器、电感等磁性器件。损耗和元器件的电流,电压以及选用的材料采取的工艺有关系。
IGBT的损耗主要有导通损耗和开关损耗,其中导通损耗和器件内阻、经过的电流
技术路线:一是采用空间矢量脉宽调制等控制方式,降低损耗,二是采用碳化硅材料的元器件,降低功率器件的内阻,三是采用三电平,五电平等多电平电气拓扑以及软开关技术,降低功率器件两端的电压,降低功率器件的开关频率
备选项目,并根据国家科技计划预算落实情况安排立项。科技部随后公布了863计划和支撑计划在新材料、交通、先进能源、先进制造、信息、地球观测与导航、资源及环境、生物和医药、人口与健康、海洋、现代农业等11
带电力电子器件的光伏逆变器研制及示范应用(前沿技术类,国拨经费控制额800万元,企业牵头)研制碳化硅(SiC)和氮化镓(GaN)电力电子芯片和器件,研究SiC和GaN器件在不同功率等级、电压范围
够清晰观察。
体缺陷有很多种类,常见的有包裹体、气泡、空洞、微沉淀等。这些缺陷区域在宏观上与晶体其他位置的晶格结构、晶格常数、材料密度、化学成分以及物理性质有所不同,好像是在整个晶体中的独立王国
相称为夹杂物。应用电子探针和扫描电子显微镜观察到直拉或者区熔硅单晶中,存在α-SiC和β-SiC颗粒,其尺寸由几个微米到十几个微米。
3、孔洞
硅单晶中存在的近于圆柱形或球形的空洞。在硅单晶机械
,钢线的密度为7.8kg/L,钢线的主要参数为钢线直径、钢线长度、拉伸强度、破断力、伸缩率等。在多线切割加工过程中,钢线作为实现对晶棒切割磨削的载体,通过高速运动,保证SIC磨料达到切削去除硅材料的
基本能量,SIC磨料在研磨去除中受到钢线压力,此压力来源于不断的进给运动,由于钢线的高速运动,带动磨料在钢丝和晶棒之间运动,实现对硅晶材料的切除,在此运动过程中,钢丝和被去除的硅材料相互都具有磨损,然而
功率测试平台,通过对功率半导体晶圆及封装材料特性、寄生参数等进行认知研究,使半导体器件技术与电力电子技术深度融合。阳光电源率先在逆变器中规模应用了最新的SiC器件,三电平IGBT模块。
上附着液体磨料(砂浆)如碳化硅(SiC)等,通过钢线、液体磨料和待切割材料三者间的相互摩擦作用进行切割。金刚石线切割即采用特殊技术手段将坚硬的金刚石牢牢地均匀固定在钢线上,再用制作完成的金刚石线对材料
控制的晶体管,它集中了GTR和MOSFET的优点,驱动电路简单和开关频率高,和MOSFET相似,输出电流大和GTR相似,第五代是加入SIC碳化硅材料的MOSFET和IGBT以及碳化硅肖特基二极管
的体积,就必须要减少功率器件的热损耗,目前有两种技术路线:一是采用碳化硅材料的元器件,降低功率器件的内阻,二是采用三电平,五电平等多电平电气拓扑以及软开关技术,降低功率器件两端的电压,降低功率器件的