Cu2ZnSn(S,Se)4 (CZTSSe) 太阳能电池由地球丰富的材料组成,由于非辐射复合,在实现高功率转换效率 (PCE)
方面面临挑战。这些限制主要源于吸收体主体和异质结界面区域普遍存在
综合表征表明,Ag合金化可大幅减少体内部的深层缺陷,而Al2O3 ALD工艺则有助于形成明确的p-n界面区域以及缺陷钝化。这种协同效应使得PCE增强并伴随着所有器件参数的改进。值得注意的是,经过额外的
开路电压(VOC)和最小 0.36 V 电压损耗,并达到冠军功率转换效率(PCE) 24.53%(认证效率为24.05%)且分布较窄。令人印象深刻的是,相应模组的效率达到了20.30% (11.19
以是半透明或彩色的,因此可以美观地融入建筑物、窗户和其他结构中。另一方面,与无机太阳能电池相比,开放式晶体管的功率转换效率(PCE)较低。TOSC
有助于改善这一问题。标准的二元有机太阳能电池由一种
成分对增加 PCE
尤为重要,它可以进一步拓宽可吸收光的光谱。通过选择能在供体或受体未覆盖的区域吸收光线的客体材料,可提高电池对阳光的整体吸收能力。同时,还可以对混合薄膜的形态进行微调,即对激子解离
光伏性能。图 4b比较了由新鲜溶液和老化溶液(在50
℃环境下暴露并搅拌15小时)制造的对照器件和目标器件的电流密度-电压 (J-V) 曲线。基于新鲜溶液的对照电池的最高PCE为 23.34%(表
S3,反向23.34%,正向22.37%),VOC为1.14 V,JSC为25.33 mA cm-2,FF为 80.86%。添加1 mg TFFH
后,实现了24.62%的最高PCE(表
CuAlO₂/SnO₂ (PCE为~ 1.03%)相比,光电增强了~3.0×10³倍,并且在3000秒和6个月的循环时间内输出稳定。这主要归功于双功能钙钛矿LaNiO₃量子点,它获得了合适的费米
一个独立认证的31.25% PCE的串联电池。这些结果表明,如何将具有标准工业微米级纹理的c-Si太阳能电池升级,以将其PCE提高到30%。
克服光电转换效率限制的方法是将多种互补光活性材料结合在一个单一器件中。在迄今为止报告的不同类型的多结构设计中,因为c-Si与金属卤化物钙钛矿结合具有高PCE和低制造成本的潜力,在串联太阳能电池中已成为
,Me-4PACz和FBPAc的组合可实现高达19.5%的光电转化效率(PCE)。然后,作者调整了钙钛矿沉积条件,以在硅异质结底部电池上制备1 cm2的串联电池,该电池在晶片的两侧具有2至3
µm的金字塔结构
可印刷平面碳电极作为钙钛矿太阳能电池(PSC)的背面触点,有望取代热蒸发金属。然而,碳电极PSC(c-PSC)的功率转换效率(PCE)明显落后于其金属电极对应物。埃尔朗根-纽伦堡大学
HTL增强了对碳的空穴提取,而内部HTL减轻了钙钛矿表面复合。因此,带有HTbL的全印刷c-PSC的PCE(19.2%)优于带有单个HTL的c-PSC(17.3%)。此外,该c-PSC在1个太阳、65°c
超过360°和大约8毫米的弯曲半径(图3)。此外,本文实现了器件尺寸和PCE的显著增加,分别从4
cm2和23.27%增加到244.3 cm2和24.5%(图3e)。工业级柔性c-Si太阳能电池的
实现表明这里展示的技术路线与标准化商业生产兼容。图 3.
太阳能电池(模块)性能【运行稳定】最后,研究人员研究了电池(模块)在极端条件下的运行稳定性。柔性电池的Jsc、Voc、FF和PCE在1000
尽管1,8-二碘辛烷(DIO)和1-氯萘(CN)等非挥发性添加剂有利于提高有机太阳能电池(OSCs)的功率转换效率(PCE),但这些添加剂对相演变的影响目前仍不明确。近日,西安交通大学鲁广昊、Zhu
0.5%CN的辅助下,PM6:Y6共混膜的表面吸收光谱在TA处理后是不变的,这有助于减少PCE的变化。具有不同TA条件的添加剂器件的性能与薄膜表面的光学吸收有关,证明表面相偏析显著决定了光伏性能。