高性能钙钛矿太阳能电池需要协同钝化策略来解决电子传输层(ETL)/钙钛矿界面的缺陷,这些缺陷会影响效率和长期稳定性。鉴于此,浙江大学刘鹏&高翔院士&浙江工业大学潘军&西湖大学王睿于
硅太阳能电池因其技术成熟和高效稳定,目前在全球光伏市场中占据主导地位。然而,单结硅电池的理论效率极限(约29%)一直是制约其进一步发展的瓶颈---当光子能量高于硅的带隙时,多余的能量会以热能形式
散失。 近日关于光子倍增方向,麻省理工学院(MIT)领衔的国际团队在激子裂变增强硅太阳能电池领域取得重大突破。他们创新性地利用有机分子材料,成功将硅电池的峰值电荷生成效率提升至(138±6)%,实现
超薄柔性钙钛矿太阳能电池(f-PSC)
作为便携式电源非常受欢迎,而包括钙钛矿和器件透明电极在内的关键部件的刚度导致了制造方面的挑战。2025年6月2日,香港理工大学严锋等于Advanced
Science刊发整体性优化实现高效率与机械稳健性超薄柔性钙钛矿太阳能电池的最新研究成果。该研究开发了几种策略来提高超薄f-PSC
的机械柔韧性和光伏性能。首先,在钙钛矿薄膜的边界处引入具有低
形成具有低晶界缺陷的单片钙钛矿晶粒对于实现高性能钙钛矿太阳能电池至关重要。在底面引入二维(2D)钙钛矿晶种是一种简便易行的方法,可诱导向上定向结晶并形成单片晶粒。然而,二维钙钛矿中的大分子有机阳离子
供体单元、苯并噻二唑受体单元和BDT弱供体的协同作用,实现了高空穴迁移率和优化的能级排列,显著提升了界面电荷提取效率。3.大面积全印刷高性能钙钛矿太阳能电池模块通过MC策略成功制备了大面积(15.64
应用:探索如何将这种高性能的钙钛矿太阳能电池应用于实际商业化场景,包括与现有太阳能电池技术的集成和成本效益分析。
战略性地利用自组装单层膜(SAM)显著提高了倒置钙钛矿太阳能电池(IPSC)的界面接触和功率转换效率(PCE)。然而,SAM
和钙钛矿层之间的粘附力不足仍然是一个关键挑战,限制了进一步的性能增强
甲基哌啶氧基(TEMPO)体钝化和快速光子退火生产了高性能、稳定的甲脒碘化铅(FAPI3)钙钛矿太阳能电池(PSCs)。该团队使用快速红外退火(FIRA) 制造了功率转换效率(PCE)超过20%的
钙钛矿太阳能电池的光电转换效率达到了26.52%,并展现出优异的高温光稳定性,在85°C最大功率点连续照射1000小时后,仍能保持90.6%的初始效率。这项研究为在严苛条件下设计高性能、耐用的钙钛矿
全钙钛矿串联太阳能电池(TSCs)由宽带隙(WBG, 1.7-1.8 eV)的顶部电池与窄带隙(NBG, 1.2-1.3 eV)的底部电池组成,被认为是有望打破单结钙钛矿太阳能电池(PSCs
文章介绍反式钙钛矿太阳能电池(PSCs)在自组装分子(SAMs)技术进步的推动下取得了快速的发展。然而,实现基底上均匀的SAM覆盖仍然是一个挑战,这直接影响着器件的性能和稳定性。基于此,南开大学姜源
界面工程的突破:PhPAPy
SAM的成功开发为钙钛矿太阳能电池的HTL设计提供了新的思路。其通过分子结构设计实现均匀覆盖和界面优化的方法,为解决SAM在基底上均匀性问题提供了有效的解决方案。器件