近日,美国俄亥俄州立大学的研究人员在《电池和超级电容器》杂志上发表一项研究,阐述了一种更高效、更可靠的钾氧电池,这可能是解决电网长时间储能的关键一步。
这项研究围绕电池的阴极结构展开,阴极将
锂离子电池(许多电动汽车使用更大的版本)到巨型电池(使用金属钒制造的大型箱式商店大小)。
自2013年钾氧电池问世以来,一直是一种潜在的能源储存替代品。研究表明,这种电池比锂氧电池更有效率,储存的能量是
A. 储能技术、设备及材料:
压缩空气储能、抽水蓄能、超导电磁储能、飞轮储能、蓄热/蓄冷储能、蓄氢储能及其他可用于插电式电动车的储能技术、设备及材料;各类蓄电池(镍氢电池、锂离子
电池、锂聚合物电池、铅酸蓄电池、智能电池、钠硫电池)、储能电源、超级电容器、可再生燃料电池、液流电池等技术、设备及材料
B. 储能电站及EPC工程:
BMS电池管理系统、PCS储能逆变器、微电网、电动汽车充换电站
:
压缩空气储能、抽水蓄能、超导电磁储能、飞轮储能、蓄热/蓄冷储能、蓄氢储能及其他可用于插电式电动车的储能技术、设备及材料;各类蓄电池(镍氢电池、锂离子电池、锂聚合物电池、铅酸蓄电池、智能电池、钠硫电池
)、储能电源、超级电容器、可再生燃料电池、液流电池等技术、设备及材料
B. 储能电站及EPC工程:
BMS电池管理系统、PCS储能逆变器、微电网、电动汽车充换电站及相关配套设施
C. 新能源发电并网与
能力不够又想拿补贴的企业,忽略安全方面的一些因素;第二,部分企业为了保证一定的利润,在车企拼命压价的情况下,只能把产品品质放松,把成本降低。
公开料显示,目前动力电池主要包括锂离子电池、镍氢电池
、燃料电池、铅酸电池、超级电容器。在同体积重量情况下,锂电池的蓄电能力是镍氢电池的1.6倍,是镍镉电池的4倍,是目前最佳的能应用到电动车上的电池。
记者查询资料得知,近期发生起火事故的蔚来和特斯拉,所用的
展出的组合使用色素增感型太阳能电池和锂离子电容器的单元进行了改进,并在本届CEATEC上再次进行了展示。 色素增感型太阳能电池方面,通过将正极使用的导电性底板由金属材料改为塑料材料,降低了成本;通过去
:
压缩空气储能、抽水蓄能、超导电磁储能、飞轮储能、蓄热/蓄冷储能、蓄氢储能及其他可用于插电式电动车的储能技术、设备及材料;各类蓄电池(镍氢电池、锂离子电池、锂聚合物电池、铅酸蓄电池、智能电池、钠硫电池
)、储能电源、超级电容器、可再生燃料电池、液流电池等技术、设备及材料
D. 分布式发电、微电网、储能电站及EPC工程:
BMS电池管理系统、PCS储能逆变器、微电网、分布式发电并网、光伏逆变器
。 同是储电,储能系统可以分为电池储能、电感器储能、电容器储能和重力势能储能。电池储能中,又根据电芯材料的不同,分为锂离子电池、铅酸电池、钠硫电池、全钒液流电池、钛酸铁铝电池等。不同的方式和组合之间
、建筑能源小屋、光伏车棚能源小屋,总计29个子微电网,组成三级微电网群,其中光伏2MW、风电60kW和储能系统2.5MW,储能系统由全钒液流电池、锂离子电池、超级电容器3种类型电池组成。储能系统主要
,除抽水蓄能电站由于受地理条件的限制无法以分布式储能的形式灵活应用之外,其余类型储能技术,如电化学储能、超级电容器储能、超导储能、压缩空气等均有进行分布式应用的潜力。储能在分布式发电以及微电网中的
现状
(一)储能技术概况
储能技术主要可以分为储电和储热、储冷技术,其中储电技术一般包括物理储能(如抽水储能、压缩空气储能、飞轮储能等)、化学储能(如铅酸电池、液流电池、钠硫电池、锂离子电池等
)、电磁储能(如超导电磁储能、超级电容器储能等)。
其中,抽水蓄能是目前广泛应用、技术成熟和装机容量最大的储能类型。压缩空气储能电站虽然可以达数百兆瓦至吉瓦的规模,但目前全世界在运的大规模
储能、飞轮储能)、电气类储能(超导磁储能、超级电容器储能等)、电化学储能(高温钠系电池、液流电池、铅碳电池、锂离子电池等)、热储能(储冷技术、化学储热技术等)、化学类储能等。
超大型充电宝预制舱式混合储能
。不足之处是:超导储能的成本很高(材料和低温制冷系统),可靠性和经济性也是重要制约因素。
超级电容器储能用活性炭多孔电极和电解质组成的双电层结构获得超大的电容量。超级电容器的充放电过程始终是物理