最近,多伦多大学和IBM加拿大研发中心的电气与计算机工程系博士后Illan Kramer和他的同事采用微型光敏材料胶体量子点(CQDs),开发出了一种新的在弯曲的物体表面制作喷涂太阳能电池的方法
,该方法不仅简化了喷涂太阳能电池的生产过程,还降低了生产成本。
把光敏的胶体量子点涂在一层柔性的膜上面,就能应用在各种形状的物体表面,不论是露台家具还是飞机翅膀。在一块与汽车顶部大小相当的物体上覆上
俄罗斯国立核能研究大学莫斯科工程物理学院(MEPhI)的学者们,研制出一种制造量子点材料的新技术,有助于研发吸收广谱太阳光的便宜太阳能电池。
现行光电装置是基于硅的无机半导体材料,效率低,不能处理
全部光谱,且成本昂贵。
量子点即大小在几纳米的半导体晶体,改变其尺寸,可以轻易控制太阳能电池的性质,如扩大吸收光谱。量子点冷凝物生产是通过简单廉价方法进行的,但为了获得高质量的镀层,必须仔细
俄罗斯大学和日本法政大学学者组成的一个国际小组开始启动在石墨烯和量子点基础上制造混合平面结构的工作。 石墨烯拥有极高的导电能力,使它成为毫微电子学所需要的非常富有前景的材料。莫斯科物理工程学院纳米
phosphorus nanosheets发表于国际期刊《化学通讯》(Chemical Communications)。论文第一作者是助理研究员黄浩。
零维(0D)纳米晶体或量子点分布于二维(2D
量子点材料独一无二的光学特性相互结合,为实现高性能光电子器件提供了新的材料系统。
该项研究得到了国家自然科学基金、广东省科技计划项目、深圳市科技计划项目等的资助。
台湾中央大学光伏效率验证实验室(PVEVL)引进了新一代光驱动光伏(NLPV)的验证方法和程序,提高了该机构太阳能电池性能测试的能力和范围这其中包括了有机、钙钛矿和量子点太阳能电池的测试。 在室内
损失了。
几年前,来自多个研究小组的科学家报告说,阳光中的高能光子实际上能够激发不止一个电子,前提是它们所碰到的半导体由一种名为量子点的纳米级微粒构成。这一过程被称为多重激子发生(MEG)为研究人员
在《科学》杂志上报告说,他们开发出一种装置,即在一种半导体上覆盖了一层硫化铅量子点,能够激发出比它所接收到的光子数量更多的电子,从而产生了更大的电流,而这正是MEG的特征。然而与一枚能够实际应用的
,我们感到非常兴奋是可以参与这项工作。 更多信息:论文《单线态激子裂变敏化红外量子点太阳能电池》(Singlet Exciton Fission-Sensitized Infrared Quantum
染料敏化太阳能电池的工艺中添加一个简单的步骤,也能适用其他类型的有机与量子点(quantum-dot)技术太阳能电池。
导读: 多伦多大学(University of Toronto)的研究小组创造了第一款双层太阳能电池,制备成分为吸光纳米粒子,称为量子点(quantumdots)。量子点可进行调节
,以吸收不同部分的太阳光谱,这只需改变它们的大小,量子点已经被看作是一种很有前途的方法。
多伦多大学(University of Toronto)的研究小组创造了第一款双层太阳能电池,制备成分为吸光
导读: 来自多伦多大学、阿卜杜拉国王科技大学和宾州州立大学的研究人员共同研发出了基于胶体量子点(CQD)的转换效率最高的太阳能电池。
(译/Laven)来自多伦多大学、阿卜杜拉国王
科技大学和宾州州立大学的研究人员共同研发出了基于胶体量子点(CQD)的转换效率最高的太阳能电池。
这项成果发表在Nature Materials的最新一期。
量子点是一种可以吸收光然后将光转化成