本文苏州大学袁建宇等人报道了一种高效的原位熵配体工程策略,使用双磷酸酯来提升有机-无机杂化FAPbI量子点的分散性和电荷传输性能。研究亮点:效率突破:认证效率达18.23%通过DEHP熵配体工程,量子点太阳能电池实现18.68%的最高效率,是目前报道的最高效率之一,彰显该策略在提升器件性能方面的强大潜力。
室温亚埃级成像揭示了量子点中卤化铅钙钛矿晶格固有的原子特征与八面体倾斜,表明其在受热扰动前已处于预倾斜的低对称性状态。这些发现揭示了钙钛矿量子点本征的结构柔性,并为优化量子点在各类光电器件中的稳定性与效率提供了一种可扩展的后合成处理方法。
倒置结构钙钛矿量子点发光二极管因其与n型薄膜晶体管驱动的有源矩阵面板兼容,在下一代显示技术中具有重要前景。然而,ZnO电子传输层与钙钛矿量子点之间的界面反应会导致严重的降解和荧光猝灭,限制器件效率和运行稳定性。为此,南京理工大学徐勃和瑞典林雪平大学GlibV.Baryshnikov等人引入了一种双协同界面钝化策略,采用季戊四醇四作为多功能缓冲层。本工作确立了基于PETMP的钝化方法在高性能倒置Pe-QLED及其他光电器件中的变革潜力。
华北电力大学研究人员通过一项名为"碱增强反溶剂水解"的创新策略,将钙钛矿量子点太阳能电池的认证效率提升至18.3%,创造了该类电池的最高世界纪录。这项发表于《自然通讯》的研究,不仅刷新了效率数字,更攻克了长期困扰量子点太阳能电池发展的表面配体交换不充分的核心技术难题。这项创新不仅刷新了效率纪录,更重要的是开辟了钙钛矿量子点表面调控的新路径。
此外,锂螯合作用固定了水分子,减缓了湿气侵入。结构优化与性能提升:Li螯合使π–π堆积距离缩短,聚合物结晶度提高,空穴迁移率显著增强,器件效率从11.8%提升至13.7%。
混合卤素CsPbClBr钙钛矿量子点已成为纯蓝色发光二极管的有力候选材料。本文郑州大学姚纪松和宋继中等人提出了一种阳离子-阴离子对辅助合成策略,用于制备高质量的CsPbClBrQDs。得益于这种阳离子-阴离子对的协同钝化效应,QDs的光致发光量子产率从42%提升至86%。同时,QDs表现出高结晶质量,有利于载流子传输。本研究表明,协同离子对钝化策略是实现高效稳定纯蓝色钙钛矿LED的一种实用设计方法。
钙钛矿量子点具有成本低、合成工艺简单、光谱连续可调等多种优势,近年来备受关注,发展迅猛,器件外量子效率已提高至20%以上。通常,研究人员会使用极性溶剂清洗多余的配体,以获得配体密度合理的钙钛矿量子点。图1.分子锚的设计及理论计算图2.器件光电性能图3.器件稳定性近日,清华大学化学系马冬昕、段炼团队提出了一种晶格匹配的多位点分子锚设计策略,实现了高效稳定的钙钛矿量子点发光器件。
研究意义破解QLEDs稳定性瓶颈:首次通过晶格匹配分子设计实现器件工作寿命超过2.3万小时,推动钙钛矿QLEDs商业化进程。深度解析图1展示了晶格匹配的多位点锚定分子设计策略。图4展示了量子点发光二极管的器件性能。结论展望本研究通过精准设计晶格匹配多位点锚定分子TMeOPPO-p,实现了钙钛矿量子点表面缺陷的有效钝化与晶格稳定,成功制备出EQE近27%、工作寿命超过2.3万小时的高性能QLED器件。
钙钛矿量子点发光二极管在过去几年中取得了令人瞩目的进展,实现了超过25%的外部量子效率。通常,研究人员会使用极性溶剂以清洗多余的配体,以获得配体密度合理的量子点。近日,清华大学化学系马冬昕、段炼团队提出了一种晶格匹配的多位点分子锚设计策略,实现了高效稳定的钙钛矿QLED。这些结果表明,本工作为按需设计符合钙钛矿晶格性质的功能分子提供了新见解,并提供了突破未来实际应用瓶颈的可能性。
混合卤化物溴碘钙钛矿量子点为红色钙钛矿发光二极管提供了出色的光谱可调性,但表面缺陷会促进卤化物迁移和非辐射复合,从而降低器件性能。后处理策略在乙腈中使用短而强结合的无机配体同时蚀刻富铅表面并钝化CsPb3PeQD中的缺陷。乙腈通过强Pb配位温和地去除铅缺陷,同时保持QD完整性,这与DMSO或DMF等极性溶剂不同,DMSO或DMF会损坏PeQD。KSCN和GASCN牢固吸附以钝化不配位的Pb位点,产生具有增强PLQY、提高稳定性和优异薄膜电导性的高质量PeQD。