承受能力。
莱斯大学的 Aditya Mohite 和他的同事们发现,阳光本身会收缩二维过氧化物中原子层之间的空间,足以将材料的光伏效率提高 18%。而目前在太阳能领域,任何 1
% 的突破都是值得称赞的,更别说是两位数了。
过氧化物是具有立方体晶体格的化合物,是高效的光收集器。它们的潜力多年来一直为人所知,但它们提出了一个难题:它们善于将太阳光转化为能量,但阳光和水分
由Christiane Becker、Bernd Stannowski和Steve Albrecht教授领导的HZB三个团队共同设法将完全在HZB制造的过氧化物硅串联太阳能电池的效率提高到
过氧化物"这一材料类别已成为研究的重点:这些半导体化合物能很好地将太阳光转化为电能,而且仍有很大的改进空间。特别是,它们可以与硅太阳能电池结合成串联太阳能电池,更有效地利用太阳光。
HZB几个小组自
莱斯大学的工程团队近日开发了一种新型二维涂层的过氧化物化合物,不仅能够在严苛环境下经受更长时间的磨损,更能将光伏效率提高 18%,而且对环保也非常友好。目前光伏市场的优化通常在个位数,因此 18
% 的提升是非常可观、惊人的。
该团队成员 Aditya Mohite 表示:在过去 10 年里,过氧化物的效率已经从大约 3% 飙升到 25% 以上。其他半导体花了大约60年时间才达到这个
来自巴斯大学和伦敦帝国学院的研究人员在一份新报告中指出,仔细选择过氧化物内部层可以防止衰减,为高性能太阳能电池开发铺平道路。
发表在《自然通讯》杂志上的这份报告旨在展示如何提高锡过氧化物的寿命
,助力开发无铅材料。尽管铅对环境条件的反应性较低,但太阳能制造商正越来越多的尝试毒性较低的材料,构建既安全又稳定的太阳能系统。
报告指出,铅过氧化物太阳能电池的大范围商业应用引发了人们对铅含量可能造成的
最多的配方包括一个卤素--如氯、氟或溴--使它们被称为卤化物钙钛矿。在过氧化物的晶体结构中,这些卤化物是将相邻的八面体晶体基团拴在一起的连接点。虽然研究人员已经知道这些支点对创造过氧化物的特性至关重要
弯曲,Delaire说。但我们发现,这些卤化物过氧化物特别是比其他一些配方更'软弱'。它们不是立即弹回形状,而是非常缓慢地返回,几乎更像果冻或液体,而不是传统的固体晶体。
Delaire解释说,这种
太阳能过氧化物初创公司Evolar获得了挪威可再生能源投资公司Magnora的投资。Evolar的目标是快速实现这一技术的商业化。
Evolar公司是从Uppsala大学薄膜太阳能电池研究小组
过氧化物,Evolar目前计划实现这一技术的商业化。Evolar采用的方法是在电池中增加过氧化物薄膜层用于创建串联太阳能电池。公司表示,这有望将组件效率提高五个百分点。
Magnora表示,Evolar
日本冲绳科学技术研究所已开发出兼具高转换效率和稳定性的过氧化物太阳能电池模块。
研究人员表示,该模块实现了16.6%的转换效率,即使在经过2000小时的照射后,仍能保持约86%的初始性能。
与
目前主流的硅基太阳能电池相比,由于其转换效率高、制造成本低,因此超氧化物太阳能电池有望成为下一代太阳能电池。 另一方面,为了普及过氧化物太阳能电池,既要提高其发电效率,又要加大尺寸。 虽然小面积电池
进展 澳大利亚国立大学(ANU)的科学家利用串联钙钛矿硅电池实现了17.6%的太阳能直接制氢效率。这种电池是将低成本的过氧化物材料层叠在传统的硅太阳能电池上。目前的共识是,利用低成本的半导体来实现
过氧化硅正在成为一种很有前途的太阳能电池材料,但它存在一些耐久性问题。现在,工程师们已经开发出一种新的电极,利用 "石墨烯装甲"的保护层,可以让它们工作更加稳定。在短短10年左右的时间里,过氧化物
太阳能电池的发展速度非常快,已经或多或少地赶上了硅的几十年的发展速度,效率达到了20%左右。其优势在于,过氧化物更便宜,更容易批量生产,而且可以直接印刷或喷涂到表面。
但凡事皆不完美,有一个问题源自
氧气也被存储起来,并准备再次开始循环。而使用过氧化物代替水的好处是系统充放电效率更高。 全球对绿色氢气的投资正在加速,而绿色氢气是利用太阳能或风能生产的。 锌溴液流电池 Primus Power